Volume 40 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Danyue Huang, Haijiao Liu, Jun Sun, Yuqiu Wei, Liuyang Li, Guicheng Zhang, Laxman Pujari. Living coccolithophores in the western Pacific Ocean with mesoscale eddies[J]. Acta Oceanologica Sinica, 2021, 40(6): 111-128. doi: 10.1007/s13131-021-1780-8
Citation: Danyue Huang, Haijiao Liu, Jun Sun, Yuqiu Wei, Liuyang Li, Guicheng Zhang, Laxman Pujari. Living coccolithophores in the western Pacific Ocean with mesoscale eddies[J]. Acta Oceanologica Sinica, 2021, 40(6): 111-128. doi: 10.1007/s13131-021-1780-8

Living coccolithophores in the western Pacific Ocean with mesoscale eddies

doi: 10.1007/s13131-021-1780-8
Funds:  The National Natural Science Foundation of China under contract Nos 41876134, 41676112 and 41276124; the University Innovation Team Training Program for Tianjin under contract No. TD12-5003; the Tianjin 131 Innovation Team Program under contract No. 20180314; the Changjiang Scholar Program of Chinese Ministry of Education under contract No. T2014253.
More Information
  • Corresponding author: E-mail: phytoplankton@163.com
  • Received Date: 2019-12-25
  • Accepted Date: 2020-04-27
  • Available Online: 2021-06-29
  • Publish Date: 2021-06-01
  • Living coccolithophores (LCs) are regarded as a group of calcifiers and play important roles in global carbon cycle. This study used microscopic observations of LCs in the western Pacific Ocean to investigate their community structure and biodiversity, especially to test whether local physical traits (mesoscale eddies) could explain their biogeographic distributions during autumn of 2017. The coccolithophore calcite inventory based on carbon-volume transformation was estimated in this study. A total of 28 taxa of coccospheres and 19 types of coccoliths were identified from 161 samples. Gephyrocapsa oceanica was the most predominant species in all the coccolithophore community, followed by Florisphaera profunda, Emiliania huxleyi, Umbilicosphaera sibogae, Gladiolithus flabellatus and Umbellosphaera tenuis. The abundance of coccospheres and coccoliths ranged from 0 to 26.8×103 cells/L and from 0 to 138.5×103 coccoliths/L, averaged at 4.2×103 cells/L and 10.9×103 coccoliths/L, respectively. This study indicated that coccolithophore community in the survey area can be clustered into four groups. Three ecological niches of coccolithophores were characterized by their vertical profiles and multivariate statistical analysis. Coccolithophore abundance and species composition were remarkably different among warm-eddy region, G. oceanica dominated warm-eddy region, while F. profunda dominated warm-eddy and none-eddy region. The average values of estimated particulate inorganic carbon, particulate organic carbon were 0.197 μg/L and 0.140 μg/L, respectively. The current field study widened the dataset of coccolithophores in western Pacific Ocean.
  • loading
  • [1]
    Arruda W Z, Nof D. 2003. The Mindanao and Halmahera eddies—twin eddies induced by nonlinearities. Journal of Physical Oceanography, 33(12): 2815–2830. doi: 10.1175/1520-0485(2003)033<2815:TMAHEE>2.0.CO;2
    Balch W M. 2018. The ecology, biogeochemistry, and optical properties of coccolithophores. Annual Review of Marine Science, 10: 71–98. doi: 10.1146/annurev-marine-121916-063319
    Baumann K H, Andruleit H, Böckel B, et al. 2005. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: a review. Paläontologische Zeitschrift, 79(1): 93–112
    Berger W H. 1976. Treatise on Chemical Oceanography. London: Academic Press, 265–388
    Bollmann J, Cortés M Y, Haidar A T, et al. 2002. Techniques for quantitative analyses of calcareous marine phytoplankton. Marine Micropaleontology, 44(3–4): 163–185
    Brand L E. 1982. Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Limnology and Oceanography, 27(2): 236–245. doi: 10.4319/lo.1982.27.2.0236
    Brzezinski M A, Nelson D M. 1986. A solvent extraction method for the colorimetric determination of nanomolar concentrations of silicic acid in seawater. Marine Chemistry, 19(2): 139–151. doi: 10.1016/0304-4203(86)90045-9
    Chen Yuh-Ling, Chen Houng-Yung, Chung Cheng-Wei. 2007. Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1617–1633
    Chen Yunyan, Sun Xiaoxia, Zhu Mingliang, et al. 2017. Spatial variability of phytoplankton in the Pacific western boundary currents during summer 2014. Marine and Freshwater Research, 68(10): 1887–1900. doi: 10.1071/MF16297
    Chen Yunyan, Sun Xiaoxia, Zhu Mingliang. 2018. Net-phytoplankton communities in the Western Boundary Currents and their environmental correlations. Journal of Oceanology and Limnology, 36(2): 305–316. doi: 10.1007/s00343-017-6261-8
    Clarke K R, Gorley R N, Somerfield P, et al. 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 3rd ed. Plymouth, UK: Primer-E
    Cortés M Y, Bollmann J, Thierstein H R. 2001. Coccolithophore ecology at the HOT station ALOHA, Hawaii. Deep-Sea Research Part II: Topical Studies in Oceanography, 48(8–9): 1957–1981
    Cox M A, Cox T. 1992. Interpretation of Stress in non-metric multidimensional scaling. Statistica Applicata, 4(4): 611–618
    Doney S C, Fabry V J, Feely R A, et al. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science, 1: 169–192. doi: 10.1146/annurev.marine.010908.163834
    Durak G M, Taylor A R, Walker C E, et al. 2016. A role for diatom-like silicon transporters in calcifying coccolithophores. Nature Communications, 7(1): 10543. doi: 10.1038/ncomms10543
    Eppley R W, Reid F M H, Strickland J D H. 1970. Estimates of phytoplankton crop size, growth rate, and primary production. In: Strickland J D H, ed. The Ecology of the Plankton off La Jolla, California, in the Period April Through September 1967. California: University of California
    Frada M, Young J, Cachão M, et al. 2010. A guide to extant coccolithophores (Calcihaptophycidae, Haptophyta) using light microscopy. Journal of Nannoplankton Research, 31(2): 58–112
    Guo Shujin, Feng Yuanyuan, Wang Lei, et al. 2014. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Marine Ecology Progress Series, 516: 103–126. doi: 10.3354/meps10952
    Hagino K, Okada H, Matsuoka H. 2000. Spatial dynamics of coccolithophore assemblages in the Equatorial Western-Central Pacific Ocean. Marine Micropaleontology, 39(1–4): 53–72
    Hagino K, Okada H, Matsuoka H. 2005. Coccolithophore assemblages and morphotypes of Emiliania huxleyi in the boundary zone between the cold Oyashio and warm Kuroshio currents off the coast of Japan. Marine Micropaleontology, 55(1–2): 19–47
    Honjo S. 1996. Fluxes of particles to the interior of the open oceans. In: Ittekkot V, Schafer P, Honjo S, et al., eds. Particle Flux in the Ocean. Chichester: Wiley, 91–154
    Honjo S, Okada H. 1974. Community structure of coccolithophores in the photic layer of the mid-pacific. Micropaleontology, 20(2): 209–230. doi: 10.2307/1485061
    Houghton S D, Guptha M V S. 1991. Monsoonal and fertility controls on Recent marginal sea and continental shelf coccolith assemblages from the western Pacific and northern Indian oceans. Marine Geology, 97(3–4): 251–259
    Hu Dunxin, Wu Lixin, Cai Wenju, et al. 2015. Pacific western boundary currents and their roles in climate. Nature, 522(7556): 299–308. doi: 10.1038/nature14504
    Hu Shijian, Hu Dunxin, Guan Cong, et al. 2016. Interannual variability of the mindanao current/undercurrent in direct observations and numerical simulations. Journal of Physical Oceanography, 46(2): 483–499. doi: 10.1175/JPO-D-15-0092.1
    Hutchins D A. 2011. Oceanography: forecasting the rain ratio. Nature, 476(7358): 41–42
    Jiang Bo, Wu Xinrong, Ding Jie, et al. 2016. Comparison on the methods of determining the depths of thermocline in the South China Sea. Marine Science Bulletin (in Chinese), 35(1): 64–73
    Jin Xiaobo, Liu Chuanlian, Poulton A J, et al. 2016. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content. Biogeosciences, 13(16): 4843–4861. doi: 10.5194/bg-13-4843-2016
    Jordan R W, Cros L, Young J R. 2004. A revised classification scheme for living haptophytes. Micropaleontology, 50(S1): 55–79
    Karl D M, Tien G. 1992. Magic: a sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnology and Oceanography, 37(1): 105–116. doi: 10.4319/lo.1992.37.1.0105
    Li Xiaofan, Sui C H, Adamec D, et al. 1998. Impacts of precipitation in the upper ocean in the western Pacific warm pool during TOGA-COARE. Journal of Geophysical Research: Oceans, 103(C3): 5347–5359. doi: 10.1029/97JC03420
    Liu Haijiao, Sun Jun, Wang Dongxiao, et al. 2018. Distribution of living coccolithophores in eastern Indian Ocean during spring intermonsoon. Scientific Reports, 8(1): 12488. doi: 10.1038/s41598-018-29688-w
    Liu Haijiao, Xue Bing, Feng Yuanyuan, et al. 2015. Size-fractionated Chlorophyll a biomass in the northern South China Sea in summer 2014. Chinese Journal of Oceanology and Limnology, 34(4): 672–682
    López-Fuerte F O, Gárate-Lizárraga I, Siqueiros-Beltrones D A, et al. 2015. First record and geographic range extension of the coccolithophore Scyphosphaera apsteinii Lohman, 1902 (Haptophyta: Pontosphaeraceae) from the Pacific coast of Mexico. Check List, 11(5): 1–3
    Marañón E, González N. 1997. Primary production, calcification and macromolecular synthesis in a bloom of the coccolithophore Emiliania huxleyi in the North Sea. Marine Ecology Progress Series, 157: 61–77. doi: 10.3354/meps157061
    Messié M, Radenac M H. 2006. Seasonal variability of the surface chlorophyll in the western tropical Pacific from SeaWiFS data. Deep-Sea Research Part I: Oceanographic Research Papers, 53(10): 1581–1600. doi: 10.1016/j.dsr.2006.06.007
    Molfino B, McIntyre A. 1990. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography, 5(6): 997–1008. doi: 10.1029/PA005i006p00997
    Müller M N, Trull T W, Hallegraeff G M. 2017. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi. The ISME Journal, 11(8): 1777–1787. doi: 10.1038/ismej.2017.53
    O’Brien C J, Peloquin J A, Vogt M, et al. 2013. Global marine plankton functional type biomass distributions: coccolithophores. Earth System Science Data, 5(2): 259–276. doi: 10.5194/essd-5-259-2013
    Okada H, Honjo S. 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Research and Oceanographic Abstracts, 20(4): 355–374. doi: 10.1016/0011-7471(73)90059-4
    Okada H, Honjo S. 1975. Distribution of coccolithophores in marginal seas along the western Pacific Ocean and in the Red Sea. Marine Biology, 31(3): 271–285. doi: 10.1007/BF00387154
    Okada H, McIntyre A. 1977. Modern coccolithophores of the Pacific and north atlantic oceans. Micropaleontology, 23(1): 1–55. doi: 10.2307/1485309
    Paasche E. 1968. Marine plankton algae grown with light-dark cycles. II. Ditylum brightwellii and Nitzschia turgidula. Physiologia Plantarum, 21(1): 66–77. doi: 10.1111/j.1399-3054.1968.tb07231.x
    Pai S C, Tsau Y J, Yang T I. 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta, 434(2): 209–216. doi: 10.1016/S0003-2670(01)00851-0
    Painter S C, Poulton A J, Allen J T, et al. 2010. The COPAS’08 expedition to the Patagonian Shelf: physical and environmental conditions during the 2008 coccolithophore bloom. Continental Shelf Research, 30(18): 1907–1923. doi: 10.1016/j.csr.2010.08.013
    Perrin L, Probert I, Langer G, et al. 2016. Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores. Biogeosciences, 13(21): 5983–6001. doi: 10.5194/bg-13-5983-2016
    R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing
    Reid F M H. 1980. Coccolithophorids of the North Pacific Central Gyre with notes on their vertical and seasonal distribution. Micropaleontology, 26(2): 151–176. doi: 10.2307/1485436
    Saavedra-Pellitero M, Baumann K H, Flores J A, et al. 2014. Biogeographic distribution of living coccolithophores in the Pacific sector of the Southern Ocean. Marine Micropaleontology, 109: 1–20. doi: 10.1016/j.marmicro.2014.03.003
    Saavedra-Pellitero M, Flores J A, Lamy F, et al. 2011. Coccolithophore estimates of paleotemperature and paleoproductivity changes in the southeast Pacific over the past ~ 27 kyr. Paleoceanography, 26(1): PA1201
    Shutler J D, Land P E, Brown C W, et al. 2013. Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data. Biogeosciences, 10(4): 2699–2709. doi: 10.5194/bg-10-2699-2013
    Sun Jun. 2007. Organic carbon pump and carbonate counter pump of living coccolithophorid. Advances in Earth Science (in Chinese), 22(12): 1231–1239
    Sun Jun, An Baizheng, Dai Minhan, et al. 2011. Living coccolithophores in the Western South China sea in summer 2007. Oceanologia et Limnologia Sinica (in Chinese), 42(2): 170–178
    Sun Jun, Gu Xiaoyao, Feng Yuanyuan, et al. 2014. Summer and winter living coccolithophores in the Yellow Sea and the East China Sea. Biogeosciences, 11(3): 779–806. doi: 10.5194/bg-11-779-2014
    Sun Jun, Liu Dongyan. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11): 1331–1346. doi: 10.1093/plankt/fbg096
    Sun Jun, Liu Dongyan, Ning Xiuren. 2003. Phytoplankton in the Prydz Bay and the adjacent Indian sector of the Southern Ocean during the austral summer 2001/2002. Oceanologia et Limnologia Sinica (in Chinese), 34(5): 519–532
    Taylor A R, Brownlee C, Wheeler G. 2017. Coccolithophore cell biology: chalking up progress. Annual Review of Marine Science, 9: 283–310. doi: 10.1146/annurev-marine-122414-034032
    ter Braak C J F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5): 1167–1179. doi: 10.2307/1938672
    Thamatrakoln K, Hildebrand M. 2008. Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiology, 146(3): 1397–1407. doi: 10.1104/pp.107.107094
    Wei Yuqiu, Liu Haijiao, Zhang Xiaodong, et al. 2017. Physicochemical conditions in affecting the distribution of spring phytoplankton community. Chinese Journal of Oceanology and Limnology, 35(6): 1342–1361. doi: 10.1007/s00343-017-6190-6
    Wei Yuqiu, Zhang Guicheng, Chen Ju, et al. 2019. Dynamic responses of picophytoplankton to physicochemical variation in the eastern Indian Ocean. Ecology and Evolution, 9(8): 5003–5017. doi: 10.1002/ece3.5107
    Welschmeyer N A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39(8): 1985–1992. doi: 10.4319/lo.1994.39.8.1985
    Winter A. 1982. Paleoenvironmental interpretation of Quaternary coccolith assemblages from the Gulf of Aqaba (Elat), Red Sea. Revista Española de Micropaleontologia, 14: 291–314
    Yang Tiennan, Wei Kuoyen. 2003. How many coccoliths are there in a coccosphere of the extant coccolithophorids?—A compilation. Journal of Nannoplankton Research, 25(1): 7–15
    Yang Tiennan, Wei Kuoyen, Chen Liling. 2003. Occurrence of coccolithophorids in the northeastern and central South China Sea. Taiwania, 48(1): 29–45
    Young J. 1994. Functions of coccoliths. In: Winter A, Siesser W G, eds. Coccolithophores. Cambridge, UK: Cambridge University Press, 63–82
    Young J R, Ziveri P. 2000. Calculation of coccolith volume and it use in calibration of carbonate flux estimates. Deep-Sea Research Part II: Topical Studies in Oceanography, 47(9–11): 1679–1700
    Zhai Fangguo, Hu Dunxin, Wang Qingye. 2013. Study on the seasonal variability of the Halmahera Eddy. Marine Sciences (in Chinese), 37(11): 85–94
    Zondervan I. 2007. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—A review. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(5–7): 521–537
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views (336) PDF downloads(19) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint