Volume 40 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Tingting Sun, Lei Wang, Jianmin Zhao, Zhijun Dong. Application of DNA metabarcoding to characterize the diet of the moon jellyfish Aurelia coerulea polyps and ephyrae[J]. Acta Oceanologica Sinica, 2021, 40(8): 160-167. doi: 10.1007/s13131-021-1800-8
Citation: Tingting Sun, Lei Wang, Jianmin Zhao, Zhijun Dong. Application of DNA metabarcoding to characterize the diet of the moon jellyfish Aurelia coerulea polyps and ephyrae[J]. Acta Oceanologica Sinica, 2021, 40(8): 160-167. doi: 10.1007/s13131-021-1800-8

Application of DNA metabarcoding to characterize the diet of the moon jellyfish Aurelia coerulea polyps and ephyrae

doi: 10.1007/s13131-021-1800-8
Funds:  The National Key Research and Development Program of China under contract No. 2018YFC1406501; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA23050301; the National Natural Science Foundation of China under contract No. 41876138; the Instrument Developing Project of the Chinese Academy of Sciences under contract No. YJKYYQ20180047; the Key Research and Development Program of Yantai under contract No. 2018ZHGY073.
More Information
  • Corresponding author: Email: zjdong@yic.ac.cn
  • Received Date: 2020-03-16
  • Accepted Date: 2020-11-25
  • Available Online: 2021-06-17
  • Publish Date: 2021-08-31
  • Dietary studies of polyps and ephyrae are important to understand the formation and magnitude of jellyfish blooms and provide important insights into the marine food web. However, the diet of polyps and ephyrae in situ is largely unknown. Here, prey species of the polyps and ephyrae of the moon jellyfish Aurelia coerulea in situ were identified using high-throughput DNA sequencing techniques. The results show that A. coerulea polyps and ephyrae consume a variety of prey items. The polyps consume both planktonic and benthic prey, including hydromedusae, copepods, ciliates, polychaetes, stauromedusae, and phytoplankton. A. coerulea ephyrae mainly feed on copepods and hydromedusae. Gelatinous zooplankton, including Rathkea octopunctata and Sarsia tubulosa, were frequently found as part of the diet of A. coerulea polyps and ephyrae. The utilization of high-throughput sequencing technique is a useful tool for studying the diet of polyps and ephyrae in the field, complementing the traditional techniques towards a better understanding of the complex role of gelatinous animals in marine ecosystems.
  • loading
  • [1]
    Albaina A, Aguirre M, Abad D, et al. 2016. 18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species. Ecology and Evolution, 6(6): 1809–1824. doi: 10.1002/ece3.1986
    [2]
    Arai M N. 1997. A Functional Biology of Scyphozoa. London, UK: Chapman & Hall, 58–91
    [3]
    Ballard J W O, Melvin R G. 2010. Linking the mitochondrial genotype to the organismal phenotype. Molecular Ecology, 19(8): 1523–1539. doi: 10.1111/j.1365-294X.2010.04594.x
    [4]
    Båmstedt U. 1990. Trophodynamics of the scyphomedusae Aurelia aurita. Predation rate in relation to abundance, size and type of prey organism. Journal of Plankton Research, 12(1): 215–229. doi: 10.1093/plankt/12.1.215
    [5]
    Båmstedt U, Wild B, Martinussen M. 2001. Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa). Marine Biology, 139(4): 641–650. doi: 10.1007/s002270100623
    [6]
    Bayha K M, Dawson M N. 2010. New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton. The Biological Bulletin, 219(3): 249–267. doi: 10.1086/BBLv219n3p249
    [7]
    Bohmann K, Monadjem A, Noer C L, et al. 2011. Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE, 6(6): e21441. doi: 10.1371/journal.pone.0021441
    [8]
    Brassea-Pérez E, Schramm Y, Heckel G, et al. 2019. Metabarcoding analysis of the Pacific harbor seal diet in Mexico. Marine Biology, 166(8): 106. doi: 10.1007/s00227-019-3555-8
    [9]
    Caporaso J G, Kuczynski J, Stombaugh J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336. doi: 10.1038/nmeth.f.303
    [10]
    Cardona L, de Quevedo I Á, Borrell A, et al. 2012. Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS ONE, 7(3): e31329. doi: 10.1371/journal.pone.0031329
    [11]
    Cardona L, Martínez-Iñigo L, Mateo R, et al. 2015. The role of sardine as prey for pelagic predators in the western Mediterranean Sea assessed using stable isotopes and fatty acids. Marine Ecology Progress Series, 531: 1–14. doi: 10.3354/meps11353
    [12]
    Carrizo S S, Schiariti A, Nagata R M, et al. 2016. Preliminary observations on ephyrae predation by Lychnorhiza lucerna medusa (Scyphozoa; Rhizostomeae). Der Zoologische Garten, 85(1–2): 74–83. doi: 10.1016/j.zoolgart.2015.09.011
    [13]
    Cavalier-Smith T. 1998. A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society, 73: 203–266. doi: 10.1017/s0006323198005167
    [14]
    Costello J H, Colin S P, Dabiri J O. 2008. Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebrate Biology, 127(3): 265–290. doi: 10.1111/j.1744-7410.2008.00126.x
    [15]
    Dawson M N, Gupta A S, England M H. 2005. Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences of the United States of America, 102(34): 11968–11973. doi: 10.1073/pnas.0503811102
    [16]
    Deagle B E, Chiaradia A, McInnes J, et al. 2010. Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out?. Conservation Genetics, 11(5): 2039–2048. doi: 10.1007/s10592-010-0096-6
    [17]
    Dong Zhijun. 2019. Blooms of the moon jellyfish Aurelia: causes, consequences and controls. In: Sheppard C, ed. World Seas: An Environmental Evaluation. 2nd ed. Amsterdam, the Netherlands: Elsevier, 163–171, doi: 10.1016/B978-0-12-805052-1.00008-5
    [18]
    Dong Zhijun, Liu Dongyan, Keesing J K. 2010. Jellyfish blooms in China: dominant species, causes and consequences. Marine Pollution Bulletin, 60(7): 954–963. doi: 10.1016/j.marpolbul.2010.04.022
    [19]
    Dong Zhijun, Liu Dongyan, Keesing J K. 2014. Contrasting trends in populations of Rhopilema esculentum and Aurelia aurita in Chinese waters. In: Pitt K A, Lucas C H, eds. Jellyfish Blooms. Dordrecht, the Netherlands: Springer, 207–218, doi: 10.1007/978-94-007-7015-7_9
    [20]
    Dong Zhijun, Liu Zhongyuan, Liu Dongyan. 2015. Genetic characterization of the scyphozoan jellyfish Aurelia spp. in Chinese coastal waters using mitochondrial markers. Biochemical Systematics and Ecology, 60: 15–23. doi: 10.1016/j.bse.2015.02.018
    [21]
    Duarte C M, Pitt K A, Lucas C H, et al. 2013. Is global ocean sprawl a cause of jellyfish blooms?. Frontiers in Ecology and the Environment, 11(2): 91–97. doi: 10.1890/110246
    [22]
    Ficetola G F, Coissac E, Zundel S, et al. 2010. An In silico approach for the evaluation of DNA barcodes. BMC Genomics, 11: 434. doi: 10.1186/1471-2164-11-434
    [23]
    Graham W M, Kroutil R M. 2001. Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. Journal of Plankton Research, 23(1): 67–74. doi: 10.1093/plankt/23.1.67
    [24]
    Gröndahl F. 1988. Interactions between polyps of Aurelia aurita and planktonic larvae of scyphozoans: an experimental study. Marine Ecology-Progress Series, 45: 87–93. doi: 10.3354/meps045087
    [25]
    Gröndahl F. 1989. Evidence of gregarious settlement of planula larvae of the scyphozoan Aurelia aurita: an experimental study. Marine Ecology-Progress Series, 56: 119–125. doi: 10.3354/meps056119
    [26]
    Han C H, Uye S I. 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton and Benthos Research, 5(3): 98–105. doi: 10.3800/pbr.5.98
    [27]
    Higgins III J E, Ford M D, Costello J H. 2008. Transitions in morphology, nematocyst distribution, fluid motions, and prey capture during development of the scyphomedusa Cyanea capillata. The Biological Bulletin, 214(1): 29–41. doi: 10.2307/25066657
    [28]
    Hirai J, Hidaka K, Nagai S, et al. 2017. Molecular-based diet analysis of the early post-larvae of Japanese sardine Sardinops melanostictus and Pacific round herring Etrumeus teres. Marine Ecology Progress Series, 564: 99–113. doi: 10.3354/meps12008
    [29]
    Hu Simin, Guo Zhiling, Li Tao, et al. 2015. Molecular analysis of in situ diets of coral reef copepods: evidence of terrestrial plant detritus as a food source in Sanya Bay, China. Journal of Plankton Research, 37(2): 363–371. doi: 10.1093/plankt/fbv014
    [30]
    Huang Yousong. 2013. PCR-based in situ dietary analysis of two common copepods in Bohai Sea and Yellow Sea coastal waters (in Chinese)[dissertation]. Qingdao: Ocean University of China
    [31]
    Jarman S N, McInnes J C, Faux C, et al. 2013. Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE, 8(12): e82227. doi: 10.1371/journal.pone.0082227
    [32]
    Kamiyama T. 2013. Planktonic ciliates as food for the scyphozoan Aurelia aurita (s.l.): effects on asexual reproduction of the polyp stage. Journal of Experimental Marine Biology and Ecology, 445: 21–28. doi: 10.1016/j.jembe.2013.03.018
    [33]
    Kamiyama T. 2018. Planktonic ciliates as food for the scyphozoan Aurelia coerulea: feeding and growth responses of ephyra and metephyra stages. Journal of Oceanography, 74: 53–63. doi: 10.1007/s10872-017-0438-9
    [34]
    Kodama T, Hirai J, Tamura S, et al. 2017. Diet composition and feeding habits of larval Pacific bluefin tuna Thunnus orientalis in the Sea of Japan: integrated morphological and metagenetic analysis. Marine Ecology Progress Series, 583: 211–226. doi: 10.3354/meps12341
    [35]
    Kogovšek T, Bogunović B, Malej A. 2010. Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia, 645: 81–96. doi: 10.1007/s10750-010-0217-8
    [36]
    Lo W T, Chen I L. 2008. Population succession and feeding of scyphomedusae, Aurelia aurita, in a eutrophic tropical lagoon in Taiwan. Estuarine, Coastal and Shelf Science, 76(2): 227–238. doi: 10.1016/j.ecss.2007.07.015
    [37]
    Lucas C H, Graham W M, Widmer C. 2012. Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Advances in Marine Biology, 63: 133–196. doi: 10.1016/b978-0-12-394282-1.00003-x
    [38]
    Magoč T, Salzberg S L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21): 2957–2963. doi: 10.1093/bioinformatics/btr507
    [39]
    Malej A, Turk V, Lučić D, et al. 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology, 151(3): 827–841. doi: 10.1007/s00227-006-0503-1
    [40]
    McInnes J C, Alderman R, Lea M A, et al. 2017. High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding. Molecular Ecology, 26(18): 4831–4845. doi: 10.1111/mec.14245
    [41]
    O’Rorke R, Lavery S, Chow S, et al. 2012. Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS ONE, 7(8): e42757. doi: 10.1371/journal.pone.0042757
    [42]
    O’Rorke R, Lavery S D, Wang M, et al. 2014. Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques. Marine Biology, 161(3): 551–563. doi: 10.1007/s00227-013-2357-7
    [43]
    Östman C. 1997. Abundance, feeding behaviour and nematocysts of scyphopolyps (Cnidaria) and nematocysts in their predator, the nudibranch Coryphella verrucosa (Mollusca). Hydrobiologia, 355(1): 21–28. doi: 10.1023/A:1003065726381
    [44]
    Pompanon F, Deagle B E, Symondson W O C, et al. 2012. Who is eating what: diet assessment using next generation sequencing. Molecular Ecology, 21(8): 1931–1950. doi: 10.1111/j.1365-294x.2011.05403.x
    [45]
    Purcell J E. 1997. Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates and effects on prey populations. Annales de l'Institute Oceanographique, 73(2): 125–137
    [46]
    Purcell J E. 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science, 4: 209–235. doi: 10.1146/annurev-marine-120709-142751
    [47]
    Purcell J E, Baxter E J, Fuentes V. 2013. Jellyfish as products and problems of aquaculture. In: Allan G, Burnell G, eds. Advances in Aquaculture Hatchery Technology. Cambridge, UK: Woodhead Publishing, 404–430, doi: 10.1533/9780857097460.2.404
    [48]
    Purcell J E, Hoover R A, Schwarck N T. 2009. Interannual variation of strobilation by the scyphozoan Aurelia labiata in relation to polyp density, temperature, salinity, and light conditions in situ. Marine Ecology Progress Series, 375: 139–149. doi: 10.3354/meps07785
    [49]
    Purcell J E, Sturdevant M V. 2001. Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Marine Ecology Progress Series, 210: 67–83. doi: 10.3354/meps210067
    [50]
    Riisgård H U, Madsen C V. 2011. Clearance rates of ephyrae and small medusae of the common jellyfish Aurelia aurita offered different types of prey. Journal of Sea Research, 65(1): 51–57. doi: 10.1016/j.seares.2010.07.002
    [51]
    Schiariti A, Morandini A C, Jarms G, et al. 2014. Asexual reproduction strategies and blooming potential in Scyphozoa. Marine Ecology Progress Series, 510: 241–253. doi: 10.3354/meps10798
    [52]
    Scorrano S, Aglieri G, Boero F, et al. 2017. Unmasking Aurelia species in the Mediterranean Sea: an integrative morphometric and molecular approach. Zoological Journal of the Linnean Society, 180(2): 243–267. doi: 10.1111/zoj.12494
    [53]
    Skikne S A, Sherlock R E, Robison B H. 2009. Uptake of dissolved organic matter by ephyrae of two species of scyphomedusae. Journal of Plankton Research, 31(12): 1563–1570. doi: 10.1093/plankt/fbp088
    [54]
    Su Maoliang, Liu Huifen, Liang Xuemei, et al. 2018. Dietary analysis of marine fish species: enhancing the detection of prey-specific DNA sequences via high-throughput sequencing using blocking primers. Estuaries and Coasts, 41(2): 560–571. doi: 10.1007/s12237-017-0279-1
    [55]
    Sullivan B K, Suchman C L, Costello J H. 1997. Mechanics of prey selection by ephyrae of the scyphomedusa Aurelia aurita. Marine Biology, 130(2): 213–222. doi: 10.1007/s002270050241
    [56]
    Thiebot J B, Arnould J P Y, Gómez-Laich A, et al. 2017. Jellyfish and other gelata as food for four penguin species-insights from predator-borne videos. Frontiers in Ecology and the Environment, 15(8): 437–441. doi: 10.1002/fee.1529
    [57]
    Titelman J, Hansson L J. 2006. Feeding rates of the jellyfish Aurelia aurita on fish larvae. Marine Biology, 149(2): 297–306. doi: 10.1007/s00227-005-0200-5
    [58]
    Tsikhon-Lukanina E A, Reznichenko O G, Lukasheva T A. 1996. Food consumption by scyphistomae of the jellyfish Aurelia aurita in the Black Sea. Oceanology, 35(6): 815–818
    [59]
    Uye S I. 2011. Human forcing of the copepod-fish-jellyfish triangular trophic relationship. Hydrobiologia, 666(1): 71–83. doi: 10.1007/s10750-010-0208-9
    [60]
    Uye S, Shimauchi H. 2005. Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan. Journal of Plankton Research, 27(3): 237–248. doi: 10.1093/plankt/fbh172
    [61]
    Wang Nan, Li Chaolun. 2015. The effect of temperature and food supply on the growth and ontogeny of Aurelia sp. 1 ephyrae. Hydrobiologia, 754(1): 157–167. doi: 10.1007/s10750-014-1981-7
    [62]
    Wang Yantao, Zheng Shan, Sun Song, et al. 2015. Effect of temperature and food type on asexual reproduction in Aurelia sp. 1 polyps. Hydrobiologia, 754(1): 169–178. doi: 10.1007/s10750-014-2020-4
    [63]
    Zheng Shan, Sun Xiaoxia, Wang Yantao, et al. 2015. Significance of different microalgal species for growth of moon jellyfish ephyrae, Aurelia sp.1. Journal of Ocean University of China, 14(5): 823–828. doi: 10.1007/s11802-015-2775-x
    [64]
    Zoccarato L, Celussi M, Pallavicini A, et al. 2016. Aurelia aurita ephyrae reshape a coastal microbial community. Frontiers in Microbiology, 7: 749. doi: 10.3389/fmicb.2016.00749
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (152) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return