Citation: | Ruibin Xia, Bingrui Li, Chen Cheng. Response of the mixed layer depth and subduction rate in the subtropical Northeast Pacific to global warming[J]. Acta Oceanologica Sinica, 2021, 40(4): 1-9. doi: 10.1007/s13131-021-1818-y |
[1] |
Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136(8): 2999–3017. doi: 10.1175/2007MWR1978.1
|
[2] |
Dawe J T, Thompson L A. 2007. PDO-related heat and temperature budget changes in a model of the North Pacific. Journal of Climate, 20(10): 2092–2108. doi: 10.1175/JCLI4229.1
|
[3] |
de Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. doi: 10.1029/2004JC002378
|
[4] |
Dunne J P, John J G, Adcroft A J, et al. 2012. GFDL’s ESM2 global coupled climate-carbon earth system models: Part I, Physical formulation and baseline simulation characteristics. Journal of Climate, 25(19): 6646–6665. doi: 10.1175/JCLI-D-11-00560.1
|
[5] |
Hu Haibo, Liu Qinyu, Zhang Yuan, et al. 2011. Variability of subduction rates of the subtropical North Pacific mode waters. Chinese Journal of Oceanology and Limnology, 29(5): 1131–1141. doi: 10.1007/s00343-011-0237-x
|
[6] |
Jang C J, Park J, Park T, et al. 2011. Response of the ocean mixed layer depth to global warming and its impact on primary production: a case for the North Pacific Ocean. ICES Journal of Marine Science, 68(6): 996–1007. doi: 10.1093/icesjms/fsr064
|
[7] |
Jiang Shunyu, Hu Haibo, Zhang Ning, et al. 2019. Multi-source forcing effects analysis using Liang–Kleeman information flow method and the community atmosphere model (CAM4.0). Climate Dynamics, 53(9): 6035–6053
|
[8] |
Kara A B, Rochford P A, Hurlburt H E. 2003. Mixed layer depth variability over the global ocean. Journal of Geophysical Research: Oceans, 108(C3): 3079. doi: 10.1029/2000JC000736
|
[9] |
Katsura S. 2018. Properties, formation, and dissipation of the North Pacific eastern Subtropical Mode Water and its impact on interannual spiciness anomalies. Progress in Oceanography, 162: 120–131. doi: 10.1016/j.pocean.2018.02.023
|
[10] |
Levitus S E. 1982. Climatological atlas of the World Ocean. NOAA Professional Paper 13. Washington DC: US Government Printing Office
|
[11] |
Levitus S, Boyer T P. 1994. World Ocean Atlas 1994. Vol. 4. Temperature. Washington, DC: National Environmental Satellite, Data, and Information Service
|
[12] |
Liu Qinyu, Lu Yiqun. 2016. Role of horizontal density advection in seasonal deepening of the mixed layer in the subtropical Southeast Pacific. Advances in Atmospheric Sciences, 33(4): 442–451. doi: 10.1007/s00376-015-5111-x
|
[13] |
Liu Chengyan, Wang Zhaomin, Li Bingrui, et al. 2017. On the response of subduction in the South Pacific to an intensification of westerlies and heat flux in an eddy permitting ocean model. Advances in Atmospheric Sciences, 34(4): 521–531. doi: 10.1007/s00376-016-6021-2
|
[14] |
Marshall J C, Williams R G, Nurser A J G. 1993. Inferring the subduction rate and period over the North Atlantic. Journal of Physical Oceanography, 23(7): 1315–1329. doi: 10.1175/1520-0485(1993)023<1315:ITSRAP>2.0.CO;2
|
[15] |
Monterey G I, Levitus S. 1997. Climatological cycle of mixed layer depth in the world ocean. NOAA Atlas NESDIS 14. Washington, DC: US Government Printing Office
|
[16] |
Pan Aijun, Wan Xiaofang, Liu Qinyu. 2011. Diagnostics of mixed-layer thermodynamics in the formation regime of the North Pacific subtropical mode water. Journal of Tropical Oceano- graphy (in Chinese), 30(5): 8–18
|
[17] |
Pond S, Pickard G L. 1983. Introductory Dynamical Oceanography. 2nd ed. New York: Pergamon, 379
|
[18] |
Qiu Bo, Chen Shuming. 2006. Decadal variability in the formation of the North Pacific Subtropical mode water: Oceanic versus atmospheric control. Journal of Physical Oceanography, 36(7): 1365–1380. doi: 10.1175/JPO2918.1
|
[19] |
Qiu Bo, Kelly K A. 1993. Upper-ocean heat balance in the Kuroshio extension region. Journal of Physical Oceanography, 23(9): 2027–2041. doi: 10.1175/1520-0485(1993)023<2027:UOHBIT>2.0.CO;2
|
[20] |
Qu Tangdong, Chen Ju. 2009. A North Pacific decadal variability in subduction rate. Geophysical Research Letters, 36(22): L22602. doi: 10.1029/2009GL040914
|
[21] |
Somavilla R, González-Pola C, Fernández-Diaz J. 2017. The warmer the ocean surface, the shallower the mixed layer. How much of this is true?. Journal of Geophysical Research: Oceans, 122(9): 7698–7716. doi: 10.1002/2017JC013125
|
[22] |
Stommel H. 1979. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proceedings of the National Academy of Sciences of the United States of America, 76(7): 3051–3055. doi: 10.1073/pnas.76.7.3051
|
[23] |
Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485–498. doi: 10.1175/BAMS-D-11-00094.1
|
[24] |
van Vuuren D P, Edmonds J, Kainuma M, et al. 2011. The representative concentration pathways: An overview. Climatic Change, 109(1): 5
|
[25] |
Wang Ran, Cheng Xuhua, Xu Lixiao, et al. 2020a. Mesoscale eddy effects on the subduction of North Pacific eastern subtropical mode water. Journal of Geophysical Research: Oceans, 125(5): e2019JC015641
|
[26] |
Wang Ziyi, Wen Zhibin, Hu Haibo, et al. 2020b. The characteristics of near‐equatorial North Pacific Low PV water and its possible influences on the Equatorial Subsurface Ocean. Journal of Geophysical Research: Oceans, 125(9): e2020JC016282
|
[27] |
Wen Zhibin, Hu Haibo, Song Zhenya, et al. 2020. Different influences of mesoscale oceanic eddies on the North Pacific subsurface low potential vorticity water mass between winter and summer. Journal of Geophysical Research: Oceans, 125(1): e2019JC015333
|
[28] |
Williams R G. 1991. The role of the mixed layer in setting the potential vorticity of the main thermocline. Journal of Physical Oceanography, 21(12): 1803–1814. doi: 10.1175/1520-0485(1991)021<1803:TROTML>2.0.CO;2
|
[29] |
Woods J D. 1985. The physics of pycnocline ventilation. In: Nihoul J C J, ed. Coupled Ocean-Atmosphere Models. London: Elsevier, 543–590
|
[30] |
Xia Ruibin, Liu Chengyan, Cheng Chen. 2018. On the subtropical Northeast Pacific mixed layer depth and its influence on the subduction. Acta Oceanologica Sinica, 37(3): 51–62. doi: 10.1007/s13131-017-1102-3
|
[31] |
Xia Ruibin, Liu Qinyu, Xu Lixiao, et al. 2015. North Pacific Eastern Subtropical Mode Water simulation and future projection. Acta Oceanologica Sinica, 34(3): 25–30. doi: 10.1007/s13131-015-0630-y
|
[32] |
Xie S-P, Deser C, Vecchi G A, et al. 2010. Global warming pattern formation: sea surface temperature and rainfall. Journal of Climate, 23(4): 966–986. doi: 10.1175/2009JCLI3329.1
|
[33] |
Xu Lixiao, Li Peiliang, Xie S-P, et al. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7(1): 10505. doi: 10.1038/ncomms10505
|
[34] |
Xu Lixiao, Xie S-P, Liu Qinyu. 2012. Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections. Journal of Geophysical Research: Oceans, 117(C12): C12009
|
[35] |
Xu Lixiao, Xie S-P, Liu Qinyu, et al. 2017. Evolution of the North Pacific subtropical mode water in anticyclonic eddies. Journal of Geophysical Research: Oceans, 122(C12): 10118–10130
|
[36] |
Zhang Ruosi, Xie S-P, Xu Lixiao, et al. 2016. Changes in mixed layer depth and spring bloom in the Kuroshio Extension under global warming. Advances in Atmospheric Sciences, 33(4): 452–461. doi: 10.1007/s00376-015-5113-8
|