Citation: | Ruixin Huang, Bo Qiu, Zhiyou Jing. Surface available gravitational potential energy in the world oceans[J]. Acta Oceanologica Sinica, 2022, 41(4): 40-56. doi: 10.1007/s13131-021-1852-9 |
[1] |
Apel J R. 1980. Satellite sensing of ocean surface dynamics. Annual Review of Earth and Planetary Sciences, 8: 303–342. doi: 10.1146/annurev.ea.08.050180.001511
|
[2] |
Apel J R, Byrne H M, Proni J R, et al. 1975. Observations of oceanic internal and surface waves from the earth resources technology satellite. Journal of Geophysical Research, 80(6): 865–881. doi: 10.1029/JC080i006p00865
|
[3] |
Apel J R, Byrne H M, Proni J R, et al. 1976. A study of oceanic internal waves using satellite imagery and ship data. Remote Sensing of Environment, 5: 125–135. doi: 10.1016/0034-4257(76)90043-2
|
[4] |
Behringer D, Xue Yan. 2004. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. In: Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting. Washington: Washington State Convention and Trade Center, 11–15
|
[5] |
Blumen W. 1972. Geostrophic adjustment. Reviews of Geophysics, 10(2): 485–528. doi: 10.1029/RG010i002p00485
|
[6] |
Cao Haijin, Jing Zhiyou, Fox-Kemper B, et al. 2019. Scale transition from geostrophic motions to internal waves in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(12): 9364–9383. doi: 10.1029/2019jc015575
|
[7] |
Chavanne C P, Klein P. 2010. Can oceanic submesoscale processes be observed with satellite altimetry?. Geophysical Research Letters, 37(22): L22602,
|
[8] |
Chelton D B, Schlax M G, Samelson R M, et al. 2019. Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity. Progress in Oceanography, 173: 256–350. doi: 10.1016/j.pocean.2018.10.012
|
[9] |
Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41(1): 253–282. doi: 10.1146/annurev.fluid.40.111406.102139
|
[10] |
Frederikse T, Landerer F, Caron L, et al. 2020. The causes of sea-level rise since 1900. Nature, 584(7821): 393–397. doi: 10.1038/s41586-020-2591-3
|
[11] |
Gill A E. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press, 30
|
[12] |
Gula J, Molemaker M J, McWilliams J C. 2014. Submesoscale cold filaments in the gulf stream. Journal of Physical Oceanography, 44(10): 2617–2643. doi: 10.1175/jpo-d-14-0029.1
|
[13] |
Huang Ruixin. 2005. Available potential energy in the world’s oceans. Journal of Marine Research, 63(1): 141–158. doi: 10.1357/0022240053693770
|
[14] |
Huang Ruixin. 2010. Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge: Cambridge University Press, 791
|
[15] |
Huang Ruixin, Jin Xiangze. 2002. Sea surface elevation and bottom pressure anomalies due to thermohaline forcing. Part I: isolated perturbations. Journal of Physical Oceanography, 32(7): 2131–2150. doi: 10.1175/1520-0485(2002)032<2131:sseabp>2.0.co;2
|
[16] |
Jing Zhiyou, Fox-Kemper B, Cao Haijin, et al. 2021. Submesoscale fronts and their dynamical processes associated with symmetric instability in the Northwest Pacific Subtropical Ocean. Journal of Physical Oceanography, 51(1): 83–100. doi: 10.1175/JPO-D-20-0076.1
|
[17] |
Klymak J M, Shearman R K, Gula J, et al. 2016. Submesoscale streamers exchange water on the north wall of the Gulf Stream. Geophysical Research Letters, 43(3): 1226–1233. doi: 10.1002/2015gl067152
|
[18] |
Lorenz E N. 1955. Available potential energy and the maintenance of the general circulation. Tellus, 7(2): 157–167. doi: 10.3402/tellusa.v7i2.8796
|
[19] |
Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annual Review of Marine Science, 8(1): 161–184. doi: 10.1146/annurev-marine-010814-015912
|
[20] |
Margules M. 1905. Uber die energie der sturme. Wein K K. Hof-und. Stattsdruckerei: 26
|
[21] |
Mei C C. 1983. The Applied Dynamics of Ocean Surface Waves. New York: Wiley, 740
|
[22] |
Oort A H, Anderson L A, Peixoto J P. 1994. Estimates of the energy cycle of the oceans. Journal of Geophysical Research: Oceans, 99(C4): 7665–7688. doi: 10.1029/93jc03556
|
[23] |
Oort A H, Ascher S C, Levitus S, et al. 1989. New estimates of the available potential energy in the world ocean. Journal of Geophysical Research: Oceans, 94(C3): 3187–3200. doi: 10.1029/JC094iC03p03187
|
[24] |
Pedlosky J. 1987. Geophysical Fluid Dynamics. New York: Springer-Verlag, 710
|
[25] |
Qiu Bo, Chen Shuiming, Klein P, et al. 2018. Seasonality in transition scale from balanced to unbalanced motions in the world ocean. Journal of Physical Oceanography, 48(3): 591–605. doi: 10.1175/jpo-d-17-0169.1
|
[26] |
Qiu Bo, Nakano T, Chen Shuiming, et al. 2017. Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nature Communications, 8(1): 14055. doi: 10.1038/ncomms14055
|
[27] |
Ray R D, Zaron E D. 2011. Non-stationary internal tides observed with satellite altimetry. Geophysical Research Letters, 38(17): L17609. doi: 10.1029/2011gl048617
|
[28] |
Reid R O, Elliott B A, Olson D B. 1981. Available potential energy: a clarification. Journal of Physical Oceanography, 11(1): 15–29. doi: 10.1175/1520-0485(1981)011<0015:apeac>2.0.co;2
|
[29] |
Su Zhan, Wang Jinbo, Klein P, et al. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9: 775. doi: 10.1038/s41467-018-02983-w
|
[30] |
Sullivan P P, McWilliams J C. 2018. Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. Journal of Fluid Mechanics, 837: 341–380. doi: 10.1017/jfm.2017.833
|
[31] |
Taylor J R, Ferrari R. 2011. Ocean fronts trigger high latitude phytoplankton blooms. Geophysical Research Letters, 38(23): L23601. doi: 10.1029/2011gl049312
|
[32] |
Thomas L N, Taylor J R, D’Asaro E A, et al. 2016. Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. Journal of Physical Oceanography, 46(1): 197–217. doi: 10.1175/jpo-d-15-0008.1
|
[33] |
Wang Wei, Huang Ruixin. 2004. Wind energy input to the surface waves. Journal of Physical Oceanography, 34(5): 1276–1280. doi: 10.1175/1520-0485(2004)034<1276:weitts>2.0.co;2
|
[34] |
Wunsch C. 1998. The work done by the wind on the oceanic general circulation. Journal of Physical Oceanography, 28(11): 2332–2340. doi: 10.1175/1520-0485(1998)028<2332:twdbtw>2.0.co;2
|
[35] |
Zhao Zhongxiang. 2017. The global mode-1 S2 internal tide. Journal of Geophysical Research: Oceans, 122(11): 8794–8812. doi: 10.1002/2017jc013112
|
supplement-huangruixin.pdf |