Citation: | Liang Yi, Haifeng Wang, Geng Liu, Yanping Chen, Huiqiang Yao, Xiguang Deng. Magnetic minerals in Mid-Pleistocene sediments on the Caiwei Guyot, Northwest Pacific and their response to the Mid-Brunhes climate event[J]. Acta Oceanologica Sinica, 2021, 40(12): 1-11. doi: 10.1007/s13131-021-1872-5 |
[1] |
Ao Hong, Rohling E J, Stringer C, et al. 2020. Two-stage mid-Brunhes climate transition and mid-Pleistocene human diversification. Earth-Science Reviews, 210: 103354. doi: 10.1016/j.earscirev.2020.103354
|
[2] |
Barth A M, Clark P U, Bill N S, et al. 2018. Climate evolution across the Mid-Brunhes transition. Climate of the Past, 14(12): 2071–2087. doi: 10.5194/cp-14-2071-2018
|
[3] |
Berger W H, Bickert T, Schmidt H, et al. 1993. Quaternary carbon isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau. In: Proceedings of the Ocean Drilling Program, Volume 130 Scientific Results. College State, TX, USA: Ocean Drilling Program, 381–395
|
[4] |
Chang Liao, Harrison R J, Zeng Fan, et al. 2018. Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene–Eocene Thermal Maximum. Nature Communications, 9(1): 4007. doi: 10.1038/s41467-018-06472-y
|
[5] |
Chang Liao, Heslop D, Roberts A P, et al. 2016. Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature. Journal of Geophysical Research: Solid Earth, 121(1): 3–14. doi: 10.1002/2015JB012485
|
[6] |
Cheng Hai, Edwards R L, Sinha A, et al. 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534(7609): 640–646. doi: 10.1038/nature18591
|
[7] |
Clark P U, Alley R B, Pollard D. 1999. Northern Hemisphere ice-sheet influences on global climate change. Science, 286(5442): 1104–1111. doi: 10.1126/science.286.5442.1104
|
[8] |
Day R, Fuller M, Schmidt V A. 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13(4): 260–267. doi: 10.1016/0031-9201(77)90108-X
|
[9] |
Deng Yinan, Ren Jiangbo, Guo Qingjun, et al. 2017. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific. Scientific Reports, 7(1): 16539. doi: 10.1038/s41598-017-16379-1
|
[10] |
Deng Xiguang, Yi Liang, Paterson G A, et al. 2016. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the middle Pleistocene: potential constraints for Antarctic bottom water circulation. International Geology Review, 58(1): 49–57. doi: 10.1080/00206814.2015.1055597
|
[11] |
Duan Zongqi, Gao Xing, Liu Qingsong. 2012. Anhysteretic remanent magnetization (ARM) and its application to geoscience. Progress in Geophysics (in Chinese), 27(5): 1929–1938. doi: 10.6038/j.issn.1004-2903.2012.05.013
|
[12] |
Evans M E, Heller F. 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Amsterdam: Academic Press, 1–299
|
[13] |
Guo Binbin, Wang Weiqiang, Shu Yeqiang, et al. 2020. Observed deep anticyclonic cap over Caiwei Guyot. Journal of Geophysical Research: Oceans, 125(10): e2020JC016254. doi: 10.1029/2020JC016254
|
[14] |
Haley B A, Klinkhammer G P, McManus J. 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta, 68(6): 1265–1279. doi: 10.1016/j.gca.2003.09.012
|
[15] |
He Gaowen, Zhao Zubin, Zhu Kechao. 2001. Cobalt-Rich Crust Resources in the West Pacific (in Chinese). Beijing: Geological Publishing House, 1–92
|
[16] |
Heslop D. 2015. Numerical strategies for magnetic mineral unmixing. Earth-Science Reviews, 150: 256–284. doi: 10.1016/j.earscirev.2015.07.007
|
[17] |
Heslop D, Roberts A P. 2012. A method for unmixing magnetic hysteresis loops. Journal of Geophysical Research: Solid Earth, 117(B3): B03103. doi: 10.1029/2011JB008859
|
[18] |
Hilgen F J, Lourens L J, Van Dam J A, et al. 2012. Chapter 29−the neogene period. In: Gradstein F M, Ogg J G, Schmitz M D, et al.,eds. The Geologic Time Scale. Boston, MA, USA: Elsevier, 923–978, doi: 10.1016/B978-0-444-59425-9.00029-9
|
[19] |
Hodell D A, Venz-Curtis K A. 2006. Late Neogene history of deepwater ventilation in the Southern Ocean. Geochemistry, 7(9): Q09001. doi: 10.1029/2005gc001211
|
[20] |
Jansen J H F, Kuijpers A, Troelstra S R. 1986. A Mid-Brunhes climatic event: long-term changes in global atmosphere and ocean circulation. Science, 232(4750): 619–622. doi: 10.1126/science.232.4750.619
|
[21] |
Jouzel J, Masson-Delmotte V, Cattani O, et al. 2007. Orbital and millennial Antarctic climate variability over the past 800, 000 years. Science, 317(5839): 793–796. doi: 10.1126/science.1141038
|
[22] |
Kawabe M, Fujio S. 2010. Pacific Ocean circulation based on observation. Journal of Oceanography, 66(3): 389–403. doi: 10.1007/s10872-010-0034-8
|
[23] |
Kemp A E S, Grigorov I, Pearce R B, et al. 2010. Migration of the Antarctic polar front through the mid-Pleistocene transition: evidence and climatic implications. Quaternary Science Reviews, 29(17–18): 1993–2009. doi: 10.1016/j.quascirev.2010.04.027
|
[24] |
Li Jinhua, Liu Yan, Liu Shuangchi, et al. 2020. Classification of a complexly mixed magnetic mineral assemblage in Pacific Ocean surface sediment by electron microscopy and supervised magnetic unmixing. Frontiers in Earth Science, 8: 609058. doi: 10.3389/feart.2020.609058
|
[25] |
Lin Zhen, Yi Liang, Wang Haifeng, et al. 2019. Rock magnetism of deep-sea sediments at Caiwei Guyot, Magellan seamounts of Northwest Pacific and its significance to abyssal environmental changes. Chinese Journal of Geophysics (in Chinese), 62(8): 3067–3077. doi: 10.6038/cjg2019M0526
|
[26] |
Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1): PA1003. doi: 10.1029/2004PA001071
|
[27] |
Liu Suzhen, Deng Chenglong, Xiao Jule, et al. 2015. Insolation driven biomagnetic response to the Holocene warm period in semi-arid East Asia. Scientific Reports, 5(1): 8001. doi: 10.1038/srep08001
|
[28] |
Liu Qian, Huo Yingyi, Wu Yuehong, et al. 2019. Bacterial community on a Guyot in the northwest Pacific Ocean influenced by physical dynamics and environmental variables. Journal of Geophysical Research: Biogeosciences, 124(9): 2883–2897. doi: 10.1029/2019jg005066
|
[29] |
Loulergue L, Schilt A, Spahni R, et al. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800, 000 years. Nature, 453(7193): 383–386. doi: 10.1038/nature06950
|
[30] |
Lüthi D, Le Floch M, Bereiter B, et al. 2008. High-resolution carbon dioxide concentration record 650, 000–800, 000 years before present. Nature, 453(7193): 379–382. doi: 10.1038/nature06949
|
[31] |
Maher B A. 1988. Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal, 94(1): 83–96. doi: 10.1111/j.1365-246X.1988.tb03429.x
|
[32] |
Mix A C, Pisias N G, Rugh W, et al. 1995. Benthic foraminifer stable isotope record from Site 849 (0–5 Ma): local and global climate changes. In: Proceedings of the Ocean Drilling Program, Volume 138 Scientific Results. College State, TX, USA: Ocean Drilling Program, 371–412
|
[33] |
Oldfield F. 2013. Mud and magnetism: records of late Pleistocene and Holocene environmental change recorded by magnetic measurements. Journal of Paleolimnology, 49(3): 465–480. doi: 10.1007/s10933-012-9648-8
|
[34] |
Paillard D. 1998. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 391(6665): 378–381. doi: 10.1038/34891
|
[35] |
Past Interglacials Working Group of PAGES. 2016. Interglacials of the last 800, 000 years. Reviews of Geophysics, 54(1): 162–219. doi: 10.1002/2015RG000482
|
[36] |
Pollard D, DeConto R M. 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458(7236): 329–332. doi: 10.1038/nature07809
|
[37] |
Roberts A P, Heslop D, Zhao Xiang, et al. 2014. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Reviews of Geophysics, 52(4): 557–602. doi: 10.1002/2014rg000462
|
[38] |
Roberts A P, Pike C R, Verosub K L. 2000. First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research: Solid Earth, 105(B12): 28461–28475. doi: 10.1029/2000jb900326
|
[39] |
Roberts A P, Tauxe L, Heslop D, et al. 2018. A critical appraisal of the “Day” diagram. Journal of Geophysical Research: Solid Earth, 123(4): 2618–2644. doi: 10.1002/2017jb015247
|
[40] |
Stepashko A A. 2008. Spreading cycles in the Pacific Ocean. Oceanology, 48(3): 401–408. doi: 10.1134/S0001437008030120
|
[41] |
Sun Youbin, Clemens S C, An Zhisheng, et al. 2006. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews, 25(1−2): 33–48. doi: 10.1016/j.quascirev.2005.07.005
|
[42] |
Sun Qiqi, Song Jinming, Li Xuegang, et al. 2020. Bacterial vertical and horizontal variability around a deep seamount in the Tropical Western Pacific Ocean. Marine Pollution Bulletin, 158: 111419. doi: 10.1016/j.marpolbul.2020.111419
|
[43] |
Talley L D. 2008. Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Progress in Oceanography, 78(4): 257–303. doi: 10.1016/j.pocean.2008.05.001
|
[44] |
Tauxe L, Butler R F, Van Der Voo R, et al. 2010. Essentials of Paleomagnetism. Berkeley: University of California Press, 1–512
|
[45] |
Tzedakis P C, Crucifix M, Mitsui T, et al. 2017. A simple rule to determine which insolation cycles lead to interglacials. Nature, 542(7642): 427–432. doi: 10.1038/nature21364
|
[46] |
Verwey E J W. 1939. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature, 144(3642): 327–328. doi: 10.1038/144327b0
|
[47] |
Wang Fenlian, He Gaowen, Wang Haifeng, et al. 2016a. Geochemistry of rare earth elements in a core from Mariana Trench and its significance. Marine Geology & Quaternary Geology (in Chinese), 36(4): 67–75. doi: 10.16562/j.cnki.0256-1492.2016.04.008
|
[48] |
Wang Yanmei, Zhang Huodai, Liu Jihua, et al. 2016b. Abundances and spatial distributions of associated useful elements in Co-rich crusts from Caiwei Seamount in Magellan Seamounts. Marine Geology & Quaternary Geology (in Chinese), 36(2): 65–74. doi: 10.16562/j.cnki.0256-1492.2016.02.008
|
[49] |
Wei Zhenquan, Deng Xiguang, Zhu Kechao, et al. 2017. Characteristic of substrate rocks of Caiwei Seamounts in the west Pacific Ocean. Marine Geology Frontiers (in Chinese), 33(12): 1–6. doi: 10.16028/j.1009-2722.2017.12001
|
[50] |
Wessel P. 1997. Sizes and ages of seamounts using remote sensing: implications for intraplate volcanism. Science, 277(5327): 802–805. doi: 10.1126/science.277.5327.802
|
[51] |
Wessel P, Lyons S. 1997. Distribution of large Pacific seamounts from Geosat/ERS-1: implications for the history of intraplate volcanism. Journal of Geophysical Research: Solid Earth, 102(B10): 22459–22475. doi: 10.1029/97JB01588
|
[52] |
Xiao Chunhui, Wang Yonghong, Tian Jiwei, et al. 2020. Mineral composition and geochemical characteristics of sinking particles in the Challenger Deep, Mariana Trench: implications for provenance and sedimentary environment. Deep Sea Research Part I: Oceanographic Research Papers, 157: 103211. doi: 10.1016/j.dsr.2019.103211
|
[53] |
Xu Zhaokai, Li Tiegang, Clift P D, et al. 2015. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment. Geochemistry, 16(9): 3182–3196. doi: 10.1002/2015gc005929
|
[54] |
Xu Peng, Liu Feng, Ding Zhongjun, et al. 2016. A new species of the thorid genus Paralebbeus Bruce & Chace, 1986 (Crustacea: Decapoda: Caridea) from the deep sea of the Northwestern Pacific Ocean. Zootaxa, 4085(1): 119–126. doi: 10.11646/zootaxa.4085.1.5
|
[55] |
Yamazaki T. 2009. Environmental magnetism of Pleistocene sediments in the North Pacific and Ontong-Java Plateau: temporal variations of detrital and biogenic components. Geochemistry, 10(7): Q07Z04. doi: 10.1029/2009GC002413
|
[56] |
Yamazaki T. 2012. Paleoposition of the Intertropical Convergence Zone in the eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions. Geology, 40(2): 151–154. doi: 10.1130/g32646.1
|
[57] |
Yang Zifei, Qian Qiankun, Chen Min, et al. 2020. Enhanced but highly variable bioturbation around seamounts in the northwest Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 156: 103190. doi: 10.1016/j.dsr.2019.103190
|
[58] |
Yi Liang, Wang Haifeng, Deng Xiguang, et al. 2021. Geochronology and geochemical properties of Mid-Pleistocene sediments on the Caiwei Guyot in the Northwest Pacific imply a surface-to-deep linkage. Journal of Marine Science and Engineering, 9(3): 253. doi: 10.3390/jmse9030253
|
[59] |
Yi Liang, Xu Dong, Jiang Xingyu, et al. 2020. Magnetostratigraphy and authigenic 10Be/9Be dating of Plio-Pleistocene abyssal surficial sediments on the southern slope of Mariana Trench and sedimentary processes during the Mid-Pleistocene Transition. Journal of Geophysical Research: Oceans, 125(8): e2020JC016250. doi: 10.1029/2020jc016250
|
[60] |
Yin Qiuzhen. 2013. Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature, 494(7436): 222–225. doi: 10.1038/nature11790
|
[61] |
Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686–693. doi: 10.1126/science.1059412
|
[62] |
Zhai Fangguo, Gu Yanzhen. 2020. Abyssal circulation in the Philippine Sea. Journal of Ocean University of China, 19(2): 249–262. doi: 10.1007/s11802-020-4241-7
|
[63] |
Zhao Bin, Wei Zhenquan, Yang Yong, et al. 2020. Sedimentary characteristics and the implications of cobalt-rich crusts resources at Caiwei Guyot in the Western Pacific Ocean. Marine Georesources & Geotechnology, 38(9): 1037–1045. doi: 10.1080/1064119X.2019.1648615
|