Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Sheng Zeng, Binbin Deng, Jinlong Wang, Juan Du, Jinzhou Du. Distribution of gamma-ray radionuclides in surface sediments of the Kongsfjorden, Arctic: Implications for sediment provenance[J]. Acta Oceanologica Sinica, 2022, 41(1): 21-29. doi: 10.1007/s13131-021-1916-x
Citation: Sheng Zeng, Binbin Deng, Jinlong Wang, Juan Du, Jinzhou Du. Distribution of gamma-ray radionuclides in surface sediments of the Kongsfjorden, Arctic: Implications for sediment provenance[J]. Acta Oceanologica Sinica, 2022, 41(1): 21-29. doi: 10.1007/s13131-021-1916-x

Distribution of gamma-ray radionuclides in surface sediments of the Kongsfjorden, Arctic: Implications for sediment provenance

doi: 10.1007/s13131-021-1916-x
Funds:  The National Natural Science Foundation of China under contract Nos 41706089 and 42107251.
More Information
  • Corresponding author: E-mail: jlwang@sklec.ecnu.edu.cn
  • Received Date: 2021-04-19
  • Accepted Date: 2021-07-13
  • Available Online: 2021-12-24
  • Publish Date: 2022-01-10
  • The Kongsfjorden is highly sensitive region to climate variability, however, the study of gamma-ray radionuclides in related areas is relatively scarce. In this study, the grain size, total organic carbon (TOC), 13Corg isotopes, and specific activities of seven gamma nuclides were analysed in surface sediments of the Kongsfjorden in the Arctic during the summer of 2017. The specific activities of 210Pbex, 137Cs, 238U, 226Ra, 228Ra, 228Th, and 40K were 12–256 Bq/kg, 0–3.8 Bq/kg, 25–42 Bq/kg, 24–38 Bq/kg, 22–40 Bq/kg, 22–40 Bq/kg, and 354–738 Bq/kg, respectively, with average values of (121±94) Bq/kg, (2.0±1.2) Bq/kg, (34±6) Bq/kg, (32±4) Bq/kg, (32±6) Bq/kg, (33±6) Bq/kg, and (611±119) Bq/kg. This study observed a significant positive correlation (r=0.845, p<0.05) between TOC and 210Pbex, highlighting the strong influence of organic matter on the distribution of 210Pbex. The boundary scavenging of 210Pb from the open sea contributed 27.5%–46.2% to the total 210Pbex in the sediments of the outer Kongsfjorden. The grain size was an important factor affecting the activity distribution of several radionuclides (238U, 228Ra, 228Th, 226Ra, and 40K). The specific activity of 137Cs indicated the transport of terrestrial materials from the exposed area of the Kongsfjorden. The sediments in the Kongsfjorden were derived from various material contributions of glacial meltwater debris, glacial rivers, bare soil, atmospheric deposition, and marine sources. This study explains the source of the Kongsfjorden sediment and the distribution characteristics of radionuclides, and illustrateas the main factors affecting the distribution of radionuclides, which provides a reference for the behavior of polar radionuclides in future research.
  • loading
  • [1]
    Aliani S, Bartholini G, Degl’innocenti F, et al. 2004. Multidisciplinary investigations in the marine environment of the inner Kongsfiord, Svalbard islands (September 2000 and 2001). Chemistry and Ecology, 20(S1): S19–S28
    [2]
    Appleby P G. 2004. Environmental change and atmospheric contamination on svalbard: sediment chronology. Journal of Paleolimnology, 31(4): 433–443. doi: 10.1023/B:JOPL.0000022545.73163.ed
    [3]
    Baskaran M. 2011. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. Journal of Environmental Radioactivity, 102(5): 500–513. doi: 10.1016/j.jenvrad.2010.10.007
    [4]
    Berge J, Heggland K, Lønne O J, et al. 2015. First records of Atlantic mackerel (Scomber scombrus) from the Svalbard archipelago, Norway, with possible explanations for the extension of its distribution. Archives, 68(1): 54–61
    [5]
    Bogen J, Bønsnes T E. 2003. Erosion and sediment transport in high Arctic rivers, Svalbard. Polar Research, 22(2): 175–189. doi: 10.3402/polar.v22i2.6454
    [6]
    Botwe B O, Schirone A, Delbono I, et al. 2019. Radioactivity concentrations and their radiological significance in sediments of the Tema Harbour (Greater Accra, Ghana). Journal of Radiation Research and Applied Sciences, 10(1): 63–71
    [7]
    Bourgeois S, Kerhervé P, Calleja M L, et al. 2016. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 164: 112–127. doi: 10.1016/j.jmarsys.2016.08.009
    [8]
    Bourriquen M, Mercier D, Baltzer A, et al. 2018. Paraglacial coasts responses to glacier retreat and associated shifts in river floodplains over decadal timescales (1966–2016), Kongsfjorden, Svalbard. Land Degradation & Development, 29(11): 4173–4185
    [9]
    Chen Jinfang, Liu Guangshan, Huang Yipu. 2005. Disequilibrium of natural decay series in sediments of intertidal mudflats of Xiamen. Journal of Oceanography in Taiwan Strait, 24(3): 274–282
    [10]
    Chung Y, Chang W C. 1995. Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and the South Okinawa Trough. Continental Shelf Research, 15(2–3): 149–164. doi: 10.1016/0278-4343(94)E0023-F
    [11]
    Dowdall M, Gerland S, Lind B. 2003. Gamma-emitting natural and anthropogenic radionuclides in the terrestrial environment of Kongsfjord, Svalbard. Science of the Total Environment, 305(1–3): 229–240. doi: 10.1016/S0048-9697(02)00478-3
    [12]
    Du Jinzhou, Wu Yunfeng, Huang Dekun, et al. 2010. Use of 7Be, 210Pb and 137Cs tracers to the transport of surface sediments of the Changjiang Estuary, China. Journal of Marine Systems, 82(4): 286–294. doi: 10.1016/j.jmarsys.2010.06.003
    [13]
    Elverhøi A, Liestøl O, Nagy J. 1980. Glacial erosion, sedimentation and microfauna in the inner part of Kongsfjorden, Spitsbergen. Norsk Polarinstitutt Skrifter, 172: 33–58
    [14]
    Glasser N F, Hambrey M J. 2001. Tidewater glacier beds: insights from iceberg debris in Kongsfjorden, Svalbard. Journal of Glaciology, 47(157): 295–302. doi: 10.3189/172756501781832331
    [15]
    Gwynn J P, Dowdall M, Davids C, et al. 2004. The radiological environment of svalbard. Polar Research, 23(2): 167–180. doi: 10.1111/j.1751-8369.2004.tb00006.x
    [16]
    Hegseth E N, Tverberg V. 2013. Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 113–114: 94–105
    [17]
    Hop H, Falk-Petersen S, Svendsen H, et al. 2006. Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Progress in Oceanography, 71(2–4): 182–231. doi: 10.1016/j.pocean.2006.09.007
    [18]
    Hop H, Pearson T, Hegseth E N, et al. 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Research, 21(1): 167–208. doi: 10.3402/polar.v21i1.6480
    [19]
    Huang Dekun, Du Jinzhou, Deng Bing, et al. 2013. Distribution patterns of particle-reactive radionuclides in sediments off eastern Hainan Island, China: implications for source and transport pathways. Continental Shelf Research, 57: 10–17. doi: 10.1016/j.csr.2012.04.019
    [20]
    Husum K, Howe J A, Baltzer A, et al. 2019. The marine sedimentary environments of Kongsfjorden, Svalbard: an archive of polar environmental change. Polar Research, 38: 3880
    [21]
    Koziorowska K, Kuliński K, Pempkowiak J. 2017. Distribution and origin of inorganic and organic carbon in the sediments of Kongsfjorden, Northwest Spitsbergen, European Arctic. Continental Shelf Research, 150: 27–35. doi: 10.1016/j.csr.2017.08.023
    [22]
    Kuliński K, Kędra M, Legeżyńska J, et al. 2014. Particulate organic matter sinks and sources in high Arctic fjord. Journal of Marine Systems, 139: 27–37. doi: 10.1016/j.jmarsys.2014.04.018
    [23]
    Lepage H, Laceby J P, Bonté P, et al. 2016. Investigating the source of radiocesium contaminated sediment in two Fukushima coastal catchments with sediment tracing techniques. Anthropocene, 13: 57–68. doi: 10.1016/j.ancene.2016.01.004
    [24]
    Li Peiquan, Liu Zhihe, Lu Guangshan, et al. 1984. The geochemical studies of U, Th, Ra, K(40K) in sediments of Okinawa Trough. Oceanologia et Limnologia Sinica, 15(5): 457–467
    [25]
    Lima A L, Bergquist B A, Boyle E A, et al. 2005. High-resolution historical records from Pettaquamscutt River basin sediments: 2. Pb isotopes reveal a potential new stratigraphic marker. Geochimica et Cosmochimica Acta, 69(7): 1813–1824. doi: 10.1016/j.gca.2004.10.008
    [26]
    Liu J P, Li A C, Xu K H, et al. 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research, 26(17–18): 2141–2156. doi: 10.1016/j.csr.2006.07.013
    [27]
    Lizaga I, Gaspar L, Quijano L, et al. 2019. NDVI, 137Cs and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Parón Catchment (Cordillera Blanca, Perú). Science of the Total Environment, 651: 250–260. doi: 10.1016/j.scitotenv.2018.09.075
    [28]
    Łokas E, Zaborska A, Sobota I, et al. 2019. Airborne radionuclides and heavy metals in high Arctic terrestrial environment as the indicators of sources and transfers of contamination. The Cryosphere, 13(7): 2075–2086. doi: 10.5194/tc-13-2075-2019
    [29]
    Lydersen C, Assmy P, Falk-Petersen S, et al. 2014. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems, 129: 452–471. doi: 10.1016/j.jmarsys.2013.09.006
    [30]
    Ma Fuwei, Li Maotian, Liu Yan, et al. 2020. Changes of nutrient salts deposited in the Burullus lagoon, Egypt: effects of human activity over the past century. Acta Sedimentologica Sinica, 38(6): 1249–1257
    [31]
    Mabit L, Benmansour M, Abril J M, et al. 2014. Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth-Science Reviews, 138: 335–351. doi: 10.1016/j.earscirev.2014.06.007
    [32]
    Mao Yuanyi, Lin Jing, Huang Dekun, et al. 2018. Radionuclides in the surface sediments along the coast of Bailong Peninsula in Beibu Gulf. Journal of Applied Oceanography, 37(2): 194–202
    [33]
    Piquet A M T, van de Poll W H, Visser R J W, et al. 2014. Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences, 11(8): 2263–2279. doi: 10.5194/bg-11-2263-2014
    [34]
    Sanchez-Cabeza J A, Ruiz-Fernández A C. 2012. 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta, 82: 183–200. doi: 10.1016/j.gca.2010.12.024
    [35]
    Shi Fengdeng, Cheng Zhenbo, Wu Yonghua, et al. 2011. The research on glacial-marine deposit types and sedimentary processes in the Arctic Kongsfjorden. Haiyang Xuebao (in Chinese), 33(2): 115–123
    [36]
    Shi Fengdeng, Shi Xuefa, Su Xin, et al. 2018. Clay minerals in Arctic Kongsfjorden surface sediments and their implications on provenance and paleoenvironmental change. Acta Oceanologica Sinica, 37(5): 29–38. doi: 10.1007/s13131-018-1220-6
    [37]
    Singh N, Rajan S, Choudhary S, et al. 2018a. Diisopropylnaphthalene in the surface sediments of an Arctic fjord: environmental significance. Polar Science, 18: 142–146. doi: 10.1016/j.polar.2018.04.009
    [38]
    Singh N, Sivaramakrishnan R, Choudhary S, et al. 2018b. Spatial distribution and environmental assessment of heavy metals in the surface sediments of Kongsfjorden, Svalbard. Czech Polar Reports, 8(1): 1–23. doi: 10.5817/CPR2018-1-1
    [39]
    Su C C, Huh C A. 2002. 210Pb, 137Cs and 239, 240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology, 183(1–4): 163–178. doi: 10.1016/S0025-3227(02)00165-2
    [40]
    Svendsen H, Beszczynska-Møller A, Hagen J O, et al. 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 21(1): 133–166
    [41]
    Takata H, Hasegawa K, Oikawa S, et al. 2015. Remobilization of radiocesium on riverine particles in seawater: the contribution of desorption to the export flux to the marine environment. Marine Chemistry, 176: 51–63. doi: 10.1016/j.marchem.2015.07.004
    [42]
    Torsvik T, Albretsen J, Sundfjord A, et al. 2019. Impact of tidewater glacier retreat on the fjord system: modeling present and future circulation in Kongsfjorden, Svalbard. Estuarine, Coastal and Shelf Science, 220: 152–165
    [43]
    Wadham J L, Hodson A J, Tranter M, et al. 1998. The hydrochemistry of meltwaters draining a polythermal-based, high Arctic glacier, south Svalbard: I. The ablation season. Hydrological Processes, 12(12): 1825–1849. doi: 10.1002/(SICI)1099-1085(19981015)12:12<1825::AID-HYP669>3.0.CO;2-R
    [44]
    Wang Jinlong, Du Jinzhou, Baskaran M, et al. 2016. Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers. Journal of Geophysical Research, 121(1): 224–239
    [45]
    Wang Jinlong, Du Jinzhou, Bi Qianqian. 2017. Natural radioactivity assessment of surface sediments in the Yangtze Estuary. Marine Pollution Bulletin, 114(1): 602–608. doi: 10.1016/j.marpolbul.2016.09.040
    [46]
    Wojtasik B, Świrydowicz S, Burska D, et al. 2017. Radionuclide activities in sediments on the northern coast of Spitsbergen. Polish Polar Research, 38(3): 291–312. doi: 10.1515/popore-2017-0019
    [47]
    Wu Meigui, Du Jinzhou, Zhang Jing, et al. 2011. Seasonal properties and environmental signification of 210Pbex228Thex7Be and 137Cs in surface sediment of tidal flat, Chongming, China. Marine Environmental Science, 30(6): 792–797
    [48]
    Xu Cheng, Yang Bin, Dan S F, et al. 2020. Spatiotemporal variations of biogenic elements and sources of sedimentary organic matter in the largest oyster mariculture bay (Maowei Sea), Southwest China. Science of the Total Environment, 730: 139056. doi: 10.1016/j.scitotenv.2020.139056
    [49]
    Yang Hui, Zheng Binxing, Yu Dongsheng, et al. 2017. Characteristics of surface sediment grain size and the erosion/deposition evolution in the outer Pinghai Bay, Fujian. Journal of Applied Oceanography, 36(2): 233–242
    [50]
    Zaborska A, Pempkowiak J, Papucci C. 2006. Some sediment characteristics and sedimentation rates in an Arctic Fjord (Kongsfjorden, Svalbard). Annual Environmental Protection, 8: 79–97
    [51]
    Zajaczkowsk M. 2008. Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard. Polish Polar Research, 29(1): 59–72
    [52]
    Zhu Zhuoyi, Wu Ying, Liu Sumei, et al. 2016. Organic carbon flux and particulate organic matter composition in Arctic valley glaciers: Examples from the Bayelva River and adjacent Kongsfjorden. Biogeosciences, 13(4): 975–987. doi: 10.5194/bg-13-975-2016
    [53]
    Zhu Kun, Wu Ying, Qi Lijun. 2020. Spatiotemporal variations and influencing factors of organic carbon content in the urban rivers of Shanghai. Journal of East China Normal University: Natural Science, (1): 150–158
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (529) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return