Volume 41 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Pengyuan Liu, Haikun Zhang, Yanyu Sun, Caixia Wang, Xiaoke Hu. Molecular diversity and biogeography of benthic microeukaryotes in temperate seagrass (Zostera japonica) systems of northern China[J]. Acta Oceanologica Sinica, 2022, 41(11): 115-125. doi: 10.1007/s13131-021-1960-6
Citation: Pengyuan Liu, Haikun Zhang, Yanyu Sun, Caixia Wang, Xiaoke Hu. Molecular diversity and biogeography of benthic microeukaryotes in temperate seagrass (Zostera japonica) systems of northern China[J]. Acta Oceanologica Sinica, 2022, 41(11): 115-125. doi: 10.1007/s13131-021-1960-6

Molecular diversity and biogeography of benthic microeukaryotes in temperate seagrass (Zostera japonica) systems of northern China

doi: 10.1007/s13131-021-1960-6
Funds:  The National Key Research and Development Program under contract No. 2020YFD0901003; the National Natural Science Foundation of China under contract Nos 92051119, 42077305 and 32070112; the Special National Project on Investigation of Basic Resources of China under contract No. 2019FY100700; the Key Research Project of Frontier Science of Chinese Academy of Sciences under contract No. QYZDB-SSW-DQC041; the Taishan Scholar Project Special Funding under contract No. Tspd20210317.
More Information
  • Corresponding author: E-mail: xkhu@yic.ac.cn
  • Received Date: 2021-05-09
  • Accepted Date: 2021-11-05
  • Available Online: 2022-09-19
  • Publish Date: 2022-11-01
  • The productivity and health of seagrass depend on the combined inputs of nutrients from the water and sediments in which they grow and the microbiota with which they live intimately. However, little is known about the composition and diversity pattern of single-celled benthic eukaryotes in seagrass meadows. Here, we investigated how the structure and diversity of the benthic microeukaryotic community vary with respect to season, location, and seagrass colonization, by applying 18S rRNA gene amplicon sequencing for 96 surface sediment samples that were collected from three different seagrass habitats through four seasons. We found that benthic microeukaryotic communities associated with seagrass Zostera japonica exhibited remarkable spatial and seasonal variations, as well as differences between vegetated and unvegetated sediments. Diatoms and dinoflagellates predominated in the benthic microeukaryotic communities, but they were inversely correlated and displaced each other as the dominant microbial group in different seasons or habitats. Mucoromycota was more prevalent in vegetated sediments, whereas Lobulomycetales and Chytridiales had higher proportions in unvegetated sites. Total organic carbon and total organic nitrogen were the most important environmental factors in driving the microeukaryotic assemblages and diversity. Our study expands the available knowledge on the biogeographic distribution patterns and niche preferences for benthic microeukaryotes in seagrass systems.
  • loading
  • Arasamuthu A, Mathews G, Patterson Edward J K. 2017. Spatial differences in bacterial and water quality parameters in seagrass meadows of Tuticorin Coast, Gulf of Mannar, southeastern India. Journal of Aquatic Biology & Fisheries, 5: 1–10
    Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5(10): 782–791. doi: 10.1038/nrmicro1747
    Behera P, Mohapatra M, Kim J Y, et al. 2019. Spatial and temporal heterogeneity in the structure and function of sediment bacterial communities of a tropical mangrove forest. Environmental Science and Pollution Research, 26(4): 3893–3908. doi: 10.1007/s11356-018-3927-5
    Bengtsson M M, Bühler A, Brauer A, et al. 2017. Eelgrass leaf surface microbiomes are locally variable and highly correlated with epibiotic eukaryotes. Frontiers in Microbiology, 8: 1312. doi: 10.3389/fmicb.2017.01312
    Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1): 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
    Caporaso J G, Kuczynski J, Stombaugh J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336. doi: 10.1038/nmeth.f.303
    Clarke K R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1): 117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x
    Cox T E, Cebrian J, Tabor M, et al. 2020. Do diatoms dominate benthic production in shallow systems? A case study from a mixed seagrass bed. Limnology and Oceanography Letters, 5(6): 425–434. doi: 10.1002/lol2.10167
    Crump B C, Wojahn J M, Tomas F, et al. 2018. Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes. Frontiers in Microbiology, 9: 388. doi: 10.3389/fmicb.2018.00388
    Den Hartog C. 1989. Distribution of Plasmodiophora bicaudata, a parasitic fungus on small Zostera species. Diseases of Aquatic Organisms, 6: 227–229. doi: 10.3354/dao006227
    Devereux R. 2005. Seagrass rhizosphere microbial communities. In: Kristensen E, Haese R R, Kostka J E, eds. Interactions Between Macro- and Microorganisms in Marine Sediments. Washington: American Geophysical Union, 199–216
    Duarte C M, Holmer M, Marbà N. 2005. Plant-microbe interactions in seagrass meadows. In: Kristensen E, Haese R R, and Kostka J E, eds. Interactions Between Macro- and Microorganisms in Marine Sediments. Washington: American Geophysical Union, 31–60
    Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19): 2460–2461. doi: 10.1093/bioinformatics/btq461
    Elwood H J, Olsen G J, Sogin M L. 1985. The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Molecular Biology and Evolution, 2(5): 399–410. doi: 10.1093/oxfordjournals.molbev.a040362
    Ettinger C L, Williams S L, Abbott J M, et al. 2017. Microbiome succession during ammonification in eelgrass bed sediments. PeerJ, 5: e3674. doi: 10.7717/peerj.3674
    Frederiksen M S, Glud R N. 2006. Oxygen dynamics in the rhizosphere of Zostera marina: a two-dimensional planar optode study. Limnology and Oceanography, 51(2): 1072–1083. doi: 10.4319/lo.2006.51.2.1072
    Frenken T, Alacid E, Berger S A, et al. 2017. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environmental Microbiology, 19(10): 3802–3822. doi: 10.1111/1462-2920.13827
    Glücksman E, Bell T, Griffiths R I, et al. 2010. Closely related protist strains have different grazing impacts on natural bacterial communities. Environmental Microbiology, 12(12): 3105–3113. doi: 10.1111/j.1462-2920.2010.02283.x
    Gnavi G, Ercole E, Panno L, et al. 2014. Dothideomycetes and Leotiomycetes sterile mycelia isolated from the Italian seagrass Posidonia oceanica based on rDNA data. SpringerPlus, 3(1): 508. doi: 10.1186/2193-1801-3-508
    Gong Jun, Dong Jun, Liu Xihan, et al. 2013. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist, 164(3): 369–379. doi: 10.1016/j.protis.2012.11.006
    Gong Jun, Shi Fei, Ma Bin, et al. 2015. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environmental Microbiology, 17(10): 3722–3737. doi: 10.1111/1462-2920.12763
    Hansen J W, Udy J W, Perry C J, et al. 2000. Effect of the seagrass Zostera capricorni on sediment microbial processes. Marine Ecology Progress Series, 199: 83–96. doi: 10.3354/meps199083
    Hanson C A, Fuhrman J A, Horner-Devine M C, et al. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology, 10(7): 497–506. doi: 10.1038/nrmicro2795
    Hurtado-McCormick V, Kahlke T, Petrou K, et al. 2019. Regional and microenvironmental scale characterization of the Zostera muelleri seagrass microbiome. Frontiers in Microbiology, 10: 1011. doi: 10.3389/fmicb.2019.01011
    Ikenaga M, Guevara R, Dean A L, et al. 2010. Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient. Microbial Ecology, 59(2): 284–295. doi: 10.1007/s00248-009-9572-2
    James J B, Sherman T D, Devereux R. 2006. Analysis of bacterial communities in seagrass bed sediments by double-gradient denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA genes. Microbial Ecology, 52(4): 655–661. doi: 10.1007/s00248-006-9075-3
    Jensen S I, Kühl M, Glud R N, et al. 2005. Oxic microzones and radial oxygen loss from roots of Zostera marina. Marine Ecology Progress Series, 293: 49–58. doi: 10.3354/meps293049
    Kosa G, Zimmermann B, Kohler A, et al. 2018. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids. Biotechnology for Biofuels, 11(1): 66. doi: 10.1186/s13068-018-1070-7
    Krabberød A K, Bjorbækmo M F M, Shalchian-Tabrizi K, et al. 2017. Exploring the oceanic microeukaryotic interactome with metaomics approaches. Aquatic Microbial Ecology, 79(1): 1–12. doi: 10.3354/ame01811
    Küçük A, Ergül H A. 2011. Seasonal variations of microplankton composition in İzmit Bay (Sea of Marmara). Journal of the Black Sea/Mediterranean Environment, 17(3): 216–222
    Lallias D, Hiddink J G, Fonseca V G, et al. 2015. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. The ISME Journal, 9(5): 1208–1221. doi: 10.1038/ismej.2014.213
    Lear G, Bellamy J, Case B S, et al. 2014. Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds. The ISME Journal, 8(8): 1715–1726. doi: 10.1038/ismej.2014.21
    Lehnen N, Marchant H K, Schwedt A, et al. 2016. High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Systematic and Applied Microbiology, 39(7): 476–483. doi: 10.1016/j.syapm.2016.08.004
    Lin Haiying, Sun Tao, Xue Sufeng, et al. 2016. Heavy metal spatial variation, bioaccumulation, and risk assessment of Zostera japonica habitat in the Yellow River Estuary, China. Science of the Total Environment, 541: 435–443. doi: 10.1016/j.scitotenv.2015.09.050
    Lin Xianbiao, Zheng Pengfei, Zou Songbao, et al. 2021. Seagrass (Zostera marina) promotes nitrification potential and selects specific ammonia oxidizers in coastal sediments. Journal of Soils and Sediments, 21(10): 3259–3273. doi: 10.1007/s11368-021-02951-w
    Ling Juan, Zhang Yanying, Wu Meilin, et al. 2015. Fungal community successions in rhizosphere sediment of seagrasses Enhalus acoroides under PAHs stress. International Journal of Molecular Sciences, 16(6): 14039–14055. doi: 10.3390/ijms160614039
    Liu Lemian, Wang Shanshan, Chen Jianfeng. 2020. Hysteretic response of microbial eukaryotic communities to gradually decreased nutrient concentrations in eutrophic water. Microbial Ecology, 79(4): 815–822. doi: 10.1007/s00248-019-01457-w
    Magdouli S, Yan S, Tyagi R D, et al. 2014. Heterotrophic microorganisms: a promising source for biodiesel production. Critical Reviews in Environmental Science and Technology, 44(4): 416–453. doi: 10.1080/10643389.2012.728523
    Malviya S, Scalco E, Audic S, et al. 2016. Insights into global diatom distribution and diversity in the world’s ocean. Proceedings of the National Academy of Sciences of the United States of America, 113(11): E1516–E1525. doi: 10.1073/pnas.1509523113
    Marquardt M, Vader A, Stübner E I, et al. 2016. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, in West Spitsbergen, Norway). Applied and Environmental Microbiology, 82(6): 1868–1880. doi: 10.1128/AEM.03208-15
    Martiny J B H, Bohannan B J M, Brown J H, et al. 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology, 4(2): 102–112. doi: 10.1038/nrmicro1341
    Maslennikova S, Larina N, Larin S. 2012. The effect of sediment grain size on heavy metal content. Lakes Reservoirs and Ponds, 6(1): 43–54
    Massana R, Gobet A, Audic S, et al. 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environmental Microbiology, 17(10): 4035–4049. doi: 10.1111/1462-2920.12955
    McMurdie P J, Holmes S. 2014. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Computational Biology, 10(4): e1003531. doi: 10.1371/journal.pcbi.1003531
    Medina-Pons F J, Terrados J, López-López A, et al. 2009. Evaluation of the 18S rRNA clone library approach to study the diversity of the macroeukaryotic leaf-epiphytic community of the seagrass Posidonia oceanica (L.) Delile. Marine Biology, 156(9): 1963–1976. doi: 10.1007/s00227-009-1221-2
    Nelson D M, Tréguer P, Brzezinski M A, et al. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9(3): 359–372. doi: 10.1029/95GB01070
    Newell S Y. 1981. Fungi and bacteria in or on leaves of eelgrass (Zostera marina L.) from Chesapeake Bay. Applied and Environmental Microbiology, 41(5): 1219–1224. doi: 10.1128/aem.41.5.1219-1224.1981
    Oberbeckmann S, Loeder M G J, Gerdts G, et al. 2014. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiology Ecology, 90(2): 478–492. doi: 10.1111/1574-6941.12409
    Onishi Y, Mohri Y, Tuji A, et al. 2014. The seagrass Zostera marina harbors growth-inhibiting bacteria against the toxic dinoflagellate Alexandrium tamarense. Fisheries Science, 80(2): 353–362. doi: 10.1007/s12562-013-0688-4
    Orsi W, Song Y C, Hallam S, et al. 2012. Effect of oxygen minimum zone formation on communities of marine protists. The ISME Journal, 6(8): 1586–1601. doi: 10.1038/ismej.2012.7
    Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2): 289–290. doi: 10.1093/bioinformatics/btg412
    Petersen L E, Marner M, Labes A, et al. 2019. Rapid metabolome and bioactivity profiling of fungi associated with the leaf and rhizosphere of the Baltic seagrass Zostera marina. Marine Drugs, 17(7): 419. doi: 10.3390/md17070419
    Robinson M D, McCarthy D J, Smyth G K. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140. doi: 10.1093/bioinformatics/btp616
    Sakayaroj J, Preedanon S, Supaphon O, et al. 2010. Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Diversity, 42(1): 27–45. doi: 10.1007/s13225-009-0013-9
    Schloss P D, Westcott S L, Ryabin T, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537–7541. doi: 10.1128/AEM.01541-09
    Sherr E B, Sherr B F. 2002. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek, 81(1): 293–308. doi: 10.1023/A:1020591307260
    Short F T, Polidoro B, Livingstone S R, et al. 2011. Extinction risk assessment of the world’s seagrass species. Biological Conservation, 144(7): 1961–1971. doi: 10.1016/j.biocon.2011.04.010
    Smayda T J, Trainer V L. 2010. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Progress in Oceanography, 85(1–2): 92–107,
    Smith A C, Kostka J E, Devereux R, et al. 2004. Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments. Aquatic Microbial Ecology, 37(2): 183–195. doi: 10.3354/ame037183
    Sun Feifei, Zhang Xiaoli, Zhang Qianqian, et al. 2015. Seagrass (Zostera marina) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling. Applied and Environmental Microbiology, 81(19): 6901–6914. doi: 10.1128/aem.01382-15
    Trevizan Segovia B, Sanders-Smith R, Adamczyk E M, et al. 2021. Microeukaryotic communities associated with the seagrass Zostera marina are spatially structured. Journal of Eukaryotic Microbiology, 68: e12827. doi: 10.1111/jeu.12827
    Tuchman N C, Schollett M A, Rier S T, et al. 2006. Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia, 561(1): 167–177. doi: 10.1007/s10750-005-1612-1614
    Ugarelli K, Chakrabarti S, Laas P, et al. 2017. The seagrass holobiont and its microbiome. Microorganisms, 5(4): 81. doi: 10.3390/microorganisms5040081
    Van den Wyngaert S, Rojas-Jimenez K, Seto K, et al. 2018. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. Journal of Eukaryotic Microbiology, 65(6): 870–881. doi: 10.1111/jeu.12632
    Virta L, Soininen J, Norkko A. 2020. Stable seasonal and annual alpha diversity of benthic diatom communities despite changing community composition. Frontiers in Marine Science, 7: 88. doi: 10.3389/fmars.2020.00088
    Wainwright B J, Zahn G L, Arlyza I S, et al. 2018. Seagrass-associated fungal communities follow Wallace’s line, but host genotype does not structure fungal community. Journal of Biogeography, 45(4): 762–770. doi: 10.1111/jbi.13168
    Walker A K, Campbell J. 2009. First records of the seagrass parasite Plasmodiophora diplantherae from the northcentral Gulf of Mexico. Gulf and Caribbean Research, 21(1): 63–65. doi: 10.18785/gcr.2101.07
    Wang Yongming, Liu Lemian, Chen Huihuang, et al. 2015. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river. Applied Microbiology and Biotechnology, 99(21): 9255–9266. doi: 10.1007/s00253-015-6773-0
    Wu Pengfei, Li Dongxu, Kong Lingfen, et al. 2020. The diversity and biogeography of microeukaryotes in the euphotic zone of the northwestern Pacific Ocean. Science of the Total Environment, 698: 134289. doi: 10.1016/j.scitotenv.2019.134289
    Xiao Wupeng, Liu Xin, Irwin A J, et al. 2018. Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Research, 128: 206–216. doi: 10.1016/j.watres.2017.10.051
    Yamada M, Otsubo M, Kodama M, et al. 2014. Species composition of Skeletonema (Bacillariophyceae) in planktonic and resting-stage cells in Osaka and Tokyo Bays. Plankton and Benthos Research, 9(3): 168–175. doi: 10.3800/pbr.9.168
    Zettler L A A, Gómez F, Zettler E, et al. 2002. Eukaryotic diversity in Spain’s River of Fire. Nature, 417(6885): 137. doi: 10.1038/417137a
    Zhang Wenjing, Pan Yongbo, Yang Jun, et al. 2018. The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation. Environmental Microbiology, 20(2): 462–476. doi: 10.1111/1462-2920.13916
    Zheng Pengfei, Wang Chuantao, Zhang Xiaoli, et al. 2019. Community structure and abundance of archaea in a Zostera marina meadow: a comparison between seagrass-colonized and bare sediment sites. Archaea, 2019: 5108012. doi: 10.1155/2019/5108012
    Zhu Ping, Wang Yaping, Shi Tiantian, et al. 2018. Genetic diversity of benthic microbial eukaryotes in response to spatial heterogeneity of sediment geochemistry in a mangrove ecosystem. Estuaries and Coasts, 41(3): 751–764. doi: 10.1007/s12237-017-0317-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (612) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return