Volume 41 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Zemin Wang, Mingliang Liu, Baojun Zhang, Xiangyu Song, Jiachun An. Temporal and spatial changes of the basal channel of the Getz Ice Shelf in Antarctica derived from multi-source data[J]. Acta Oceanologica Sinica, 2022, 41(9): 50-59. doi: 10.1007/s13131-022-1989-1
Citation: Zemin Wang, Mingliang Liu, Baojun Zhang, Xiangyu Song, Jiachun An. Temporal and spatial changes of the basal channel of the Getz Ice Shelf in Antarctica derived from multi-source data[J]. Acta Oceanologica Sinica, 2022, 41(9): 50-59. doi: 10.1007/s13131-022-1989-1

Temporal and spatial changes of the basal channel of the Getz Ice Shelf in Antarctica derived from multi-source data

doi: 10.1007/s13131-022-1989-1
Funds:  The National Natural Science Foundation of China under contract Nos 41941010 and 42006184; the Independent Scientific Research Project of the State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing.
More Information
  • Corresponding author: E-mail: bjzhang@whu.edu.cn
  • Received Date: 2021-05-13
  • Accepted Date: 2021-12-03
  • Available Online: 2022-04-20
  • Publish Date: 2022-08-31
  • Basal melting is an important factor affecting the stability of the ice shelf. The basal channel is formed from uneven melting, which also has an important impact on the stability of the ice shelf. Therefore, it has important scientific value to study the basal channel changes. This study combined datasets of Mosaics of Antarctica, Reference Elevation Model of Antarctica (REMA) and Operation IceBridge to study the temporal and spatial changes of basal channels at the Getz Ice Shelf in Antarctica. The relationships between the cross-sectional area and width of basal channel and those of its corresponding surface depression were statistically analyzed. Then, the changes of the basal channels of Getz Ice Shelf were derived from the ICESat observations and REMA digital elevation models (DEMs). After a detailed analysis of the factors affecting the basal channel changes, we found that the basal channels of Getz Ice Shelf were mainly concentrated in the eastern of the ice shelf, and most of them belonged to the ocean-sourced basal channel. From 2009 to 2016, the total length of the basal channel has increased by approximately 60 km. Affected by the warm Circumpolar Deep Water (CDW), significant changes in the basal channel occurred in the middle reaches of the Getz Ice Shelf. The change of the basal channels at the edge of the Getz Ice Shelf is significantly weaker than that in its middle and upper reaches. Especially in 2005–2012, the eastward wind on the ocean wind field and the westward wind around the continental shelf caused the invasion and upwelling of CDW. Meanwhile, the continuous warming of deep seawater also caused the deepening of the basal channel. During from 2012 to 2020, the fluctuations of the basal channels seem to be caused by the changes in temperature of CDW.
  • loading
  • [1]
    Alley K E, Scambos T A, Siegfried M R, et al. 2016. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geoscience, 9(4): 290–293. doi: 10.1038/ngeo2675
    Arneborg L, Wåhlin A K, Björk G, et al. 2012. Persistent inflow of warm water onto the central Amundsen shelf. Nature Geoscience, 5(12): 876–880. doi: 10.1038/ngeo1644
    Assmann K M, Darelius E, Wåhlin A K, et al. 2019. Warm circumpolar deep water at the western Getz Ice Shelf front, Antarctica. Geophysical Research Letters, 46(2): 870–878. doi: 10.1029/2018GL081354
    Bindschadler R, Vaughan D G, Vornberger P. 2011. Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica. Journal of Glaciology, 57(204): 581–595. doi: 10.3189/002214311797409802
    Borsa A A, Moholdt G, Fricker H A, et al. 2014. A range correction for ICESat and its potential impact on ice-sheet mass balance studies. The Cryosphere, 8(2): 345–357. doi: 10.5194/tc-8-345-2014
    Chartrand A M, Howat I M. 2020. Basal channel evolution on the Getz Ice Shelf, West Antarctica. Journal of Geophysical Research: Earth Surface, 125(9): e2019JF005293. doi: 10.1029/2019JF005293
    Cochran J R, Tinto K J, Bell R E. 2020. Detailed bathymetry of the continental shelf beneath the Getz Ice Shelf, West Antarctica. Journal of Geophysical Research: Earth Surface, 125(10): e2019JF005493. doi: 10.1029/2019JF005493
    Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553–597. doi: 10.1002/qj.828
    Dinniman M S, Klinck J M, Hofmann E E. 2012. Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. Journal of Climate, 25(14): 4799–4816. doi: 10.1175/JCLI-D-11-00307.1
    Dotto T S, Garabato A C N, Bacon S, et al. 2019. Wind-driven processes controlling oceanic heat delivery to the Amundsen sea, Antarctica. Journal of Physical Oceanography, 49(11): 2829–2849. doi: 10.1175/JPO-D-19-0064.1
    Dow C F, Lee W S, Greenbaum J S, et al. 2018. Basal channels drive active surface hydrology and transverse ice shelf fracture. Science Advances, 4(6): eaao7212. doi: 10.1126/sciadv.aao7212
    Dupont T K, Alley R B. 2005. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophysical Research Letters, 32(4): L04503. doi: 10.1029/2004GL022024
    Dutrieux P, De Rydt J, Jenkins A, et al. 2014. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science, 343(6167): 174–178. doi: 10.1126/science.1244341
    Farrell S L, Kurtz N, Connor L N, et al. 2011. A first assessment of IceBridge snow and ice thickness data over Arctic sea ice. IEEE Transactions on Geoscience and Remote Sensing, 50(6): 2098–2111. doi: 10.1109/TGRS.2011.2170843
    Fretwell P, Pritchard H D, Vaughan D G, et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7(1): 375–393. doi: 10.5194/tc-7-375-2013
    Fricker H A, Coleman R, Padman L, et al. 2009. Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat. Antarctic Science, 21(5): 515–532. doi: 10.1017/S095410200999023X
    Fricker H A, Padman L. 2006. Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 33(15): L15502. doi: 10.1029/2006gl026907
    Fürst J J, Durand G, Gillet-Chaulet F, et al. 2016. The safety band of Antarctic ice shelves. Nature Climate Change, 6(5): 479–482. doi: 10.1038/nclimate2912
    Greene C A, Blankenship D D, Gwyther D E, et al. 2017. Wind causes Totten Ice Shelf melt and acceleration. Science Advances, 3(11): e1701681. doi: 10.1126/sciadv.1701681
    Holland P R, Jenkins A, Holland D M. 2010. Ice and ocean processes in the Bellingshausen Sea, Antarctica. Journal of Geophysical Research: Oceans, 115(C5): C05020. doi: 10.1029/2008JC005219
    Howat I M, Porter C, Smith B E, et al. 2019. The reference elevation model of Antarctica. The Cryosphere, 13(2): 665–674. doi: 10.5194/tc-13-665-2019
    Hu Kailong, Liu Qingwang, Pang Yong, et al. 2017. Forest canopy height estimation based on ICESat/GLAS data by airborne LiDAR. Transactions of the Chinese Society of Agricultural Engineering, 33(16): 88–95
    Jacobs S, Giulivi C, Dutrieux P, et al. 2013. Getz Ice Shelf melting response to changes in ocean forcing. Journal of Geophysical Research: Oceans, 118(9): 4152–4168. doi: 10.1002/jgrc.20298
    Jacobs S S, Helmer H H, Doake C S M, et al. 1992. Melting of ice shelves and the mass balance of Antarctica. Journal of Glaciology, 38(130): 375–387. doi: 10.1017/S0022143000002252
    Jacobs S S, Jenkins A, Giulivi C F, et al. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience, 4(8): 519–523. doi: 10.1038/ngeo1188
    Jenkins A. 1999. The impact of melting ice on ocean waters. Journal of Physical Oceanography, 29(9): 2370–2381. doi: 10.1175/1520-0485(1999)029<2370:TIOMIO>2.0.CO;2
    Jenkins A. 2011. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. Journal of Physical Oceanography, 41(12): 2279–2294. doi: 10.1175/JPO-D-11-03.1
    Jenkins A, Dutrieux P, Jacobs S S, et al. 2010. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geoscience, 3(7): 468–472. doi: 10.1038/ngeo890
    Jenkins A, Jacobs S. 2008. Circulation and melting beneath George VI ice shelf, Antarctica. Journal of Geophysical Research: Oceans, 113(C4): C04013. doi: 10.1029/2007JC004449
    Jones H, Marshall J. 1993. Convection with rotation in a neutral ocean: a study of open-ocean deep convection. Journal of Physical Oceanography, 23(6): 1009–1039. doi: 10.1175/1520-0485(1993)023<1009:CWRIAN>2.0.CO;2
    Joughin I, Padman L. 2003. Melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica. Geophysical Research Letters, 30(9): 1477. doi: 10.1029/2003GL016941
    Joughin I, Smith B E, Holland D M. 2010. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 37(20): L20502. doi: 10.1029/2010gl044819
    Krabill W, Hanna E, Huybrechts P, et al. 2004. Greenland Ice Sheet: increased coastal thinning. Geophysical Research Letters, 31(24): L24402. doi: 10.1029/2004GL021533
    Kurtz N T, Farrell S L. 2011. Large-scale surveys of snow depth on Arctic sea ice from operation IceBridge. Geophysical Research Letters, 38(20): L20505. doi: 10.1029/2011GL049216
    Kwok R, Kacimi S. 2018. Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2. The Cryosphere, 12(48): 2789–2801
    Lazeroms W M J, Jenkins A, Gudmundsson G H, et al. 2018. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. The Cryosphere, 12(1): 49–70. doi: 10.5194/tc-12-49-2018
    Le Brocq A M, Payne A J, Siegert M J, et al. 2009. A subglacial water-flow model for West Antarctica. Journal of Glacialogy, 55: 879–888. doi: 10.3189/002214309790152564
    Le Brocq A M, Ross N, Griggs J A, et al. 2013. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nature Geoscience, 6(11): 945–948. doi: 10.1038/ngeo1977
    Li Teng, Liu Yan, Li Tian, et al. 2018. Antarctic surface ice velocity retrieval from MODIS-based mosaic of Antarctica (MOA). Remote Sensing, 10(7): 1045. doi: 10.3390/rs10071045
    Ligtenberg S R M, Helsen M M, van den Broeke M R. 2011. An improved semi-empirical model for the densification of Antarctic firn. The Cryosphere, 5(4): 809–819. doi: 10.5194/tc-5-809-2011
    Ligtenberg S R M, Munneke P K, van den Broeke M R. 2014. Present and future variations in Antarctic firn air content. The Cryosphere, 8(5): 1711–1723. doi: 10.5194/tc-8-1711-2014
    Liu Zhiwei, Zhu Jianjun, Fu Haiqiang, et al. 2020. Evaluation of the vertical accuracy of open global DEMs over steep terrain regions using ICESat data: a case study over Hunan Province, China. Sensors, 20(17): 4865. doi: 10.3390/s20174865
    Meierbachtol T, Harper J, Humphrey N. 2013. Basal drainage system response to increasing surface melt on the Greenland ice sheet. Science, 341(6147): 777–779. doi: 10.1126/science.1235905
    Mouginot J, Rignot E, Scheuchl B, et al. 2017. Comprehensive annual ice sheet velocity mapping using landsat-8, sentinel-1, and RADARSAT-2 data. Remote Sensing, 9(4): 364. doi: 10.3390/rs9040364
    Noh M J, Howat I M. 2017. The surface extraction from TIN based search-space minimization (SETSM) algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 55–76. doi: 10.1016/j.isprsjprs.2017.04.019
    Padman L, Costa D P, Dinniman M S, et al. 2012. Oceanic controls on the mass balance of Wilkins ice Shelf, Antarctica. Journal of Geophysical Research: Oceans, 117(C1): C01010. doi: 10.1029/2011JC007301
    Paolo F S, Fricker H A, Padman L. 2015. Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232): 327–331. doi: 10.1126/science.aaa0940
    Payne A J, Holland P R, Shepherd A P, et al. 2007. Numerical modeling of ocean-ice interactions under Pine Island Bay’s ice shelf. Journal of Geophysical Research: Oceans, 112(C10): C10019. doi: 10.1029/2006JC003733
    Picard G, Fily M, Gallee H. 2007. Surface melting derived from microwave radiometers: a climatic indicator in Antarctica. Annals of Glaciology, 46: 29–34. doi: 10.3189/172756407782871684
    Pritchard H D, Ligtenberg S R M, Fricker H A, et al. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395): 502–505. doi: 10.1038/nature10968
    Rignot E, Jacobs S, Mouginot J, et al. 2013. Ice-shelf melting around Antarctica. Science, 341(6143): 266–270. doi: 10.1126/science.1235798
    Rignot E, Steffen K. 2008. Channelized bottom melting and stability of floating ice shelves. Geophysical Research Letters, 35(2): L02503. doi: 10.1029/2007GL031765
    Scambos T A, Haran T M, Fahnestock M A, et al. 2007. MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sensing of Environment, 111(2−3): 242–257. doi: 10.1016/j.rse.2006.12.020
    Sergienko O V. 2013. Basal channels on ice shelves. Journal of Geophysical Research: Earth Surface, 118(3): 1342–1355. doi: 10.1002/jgrf.20105
    Shepherd A, Wingham D, Wallis D, et al. 2010. Recent loss of floating ice and the consequent sea level contribution. Geophysical Research Letters, 37(13): L13503. doi: 10.1029/2010GL042496
    Shi Jiuxin. 2018. A review of ice shelf-ocean interaction in Antarctica. Chinese Journal of Polar Research, 30(3): 287–302
    Silvano A, Rintoul S R, Herraiz-Borreguero L. 2016. Ocean-ice shelf interaction in east Antarctica. Oceanography, 29(4): 130–143. doi: 10.5670/oceanog.2016.105
    Silvano A, Rintoul S R, Peña-Molino B, et al. 2018. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Science Advances, 4(4): eaap9467. doi: 10.1126/sciadv.aap9467
    Slater D A, Nienow P W, Cowton T R, et al. 2015. Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophysical Research Letters, 42(8): 2861–2868. doi: 10.1002/2014GL062494
    Steig E J, Ding Q, Battisti D S, et al. 2012. Tropical forcing of Circumpolar Deep Water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Annals of Glaciology, 53(60): 19–28. doi: 10.3189/2012AoG60A110
    Stewart C, Rignot E, Steffen K, et al. 2004. Basal topography and thinning rates of Petermann Gletscher, northern Greenland, measured by ground-based phase-sensitive radar. Bergen: Bjerknes Centre for Climate Research, 43–47
    Thoma M, Jenkins A, Holland D, et al. 2008. Modelling circumpolar deep water intrusions on the Amundsen sea continental shelf, Antarctica. Geophysical Research Letters, 35(18): L18602. doi: 10.1029/2008GL034939
    Vaughan D G, Corr H F J, Bindschadler R A, et al. 2012. Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. Journal of Geophysical Research: Earth Surface, 117(F3): F03012
    Wang Zemin, Song Xiangyu, Zhang Baojun, et al. 2020. Basal channel extraction and variation analysis of Nioghalvfjerdsfjorden ice shelf in Greenland. Remote Sensing, 12(9): 1474. doi: 10.3390/rs12091474
    Wei Wei, Blankenship D D, Greenbaum J S, et al. 2020. Getz Ice Shelf melt enhanced by freshwater discharge from beneath the West Antarctic Ice Sheet. The Cryosphere, 14(4): 1399–1408. doi: 10.5194/tc-14-1399-2020
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (261) PDF downloads(18) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint