Citation: | Wei Wu, Guangxu Wang, Changsong Lin, Weiqing Liu, Quan Li, Zhendong Feng, Shuyuan Ning. Quantitative morphometric analysis of a deep-water channel in the Taranaki Basin, New Zealand[J]. Acta Oceanologica Sinica, 2023, 42(5): 42-56. doi: 10.1007/s13131-022-2024-2 |
Abreu V, Sullivan M, Pirmez C, et al. 2003. Lateral accretion packages (LAPS): an important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20(6–8): 631–648
|
Alpak F O, Barton M D, Naruk S J. 2013. The impact of fine-scale turbidite channel architecture on deep-water reservoir performance. AAPG Bulletin, 97(2): 251–284. doi: 10.1306/04021211067
|
Babonneau N, Savoye B, Cremer M, et al. 2002. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Marine and Petroleum Geology, 19(4): 445–467. doi: 10.1016/S0264-8172(02)00009-0
|
Babonneau N, Savoye B, Cremer M, et al. 2010. Sedimentary architecture in meanders of a submarine channel: Detailed study of the present Congo Turbidite channel (Zaiango Project). Journal of Sedimentary Research, 80(10): 852–866. doi: 10.2110/jsr.2010.078
|
Biscara L, Mulder T, Martinez P, et al. 2011. Transport of terrestrial organic matter in the Ogooué deep sea turbidite system (Gabon). Marine and Petroleum Geology, 28(5): 1061–1072. doi: 10.1016/j.marpetgeo.2010.12.002
|
Carter R M, Norris R J. 1976. Cainozoic history of southern New Zealand: an accord between geological observations and plate-tectonic predictions. Earth and Planetary Science Letters, 31(1): 85–94. doi: 10.1016/0012-821X(76)90099-6
|
Clark J D, Kenyon N H, Pickering K T. 1992. Quantitative analysis of the geometry of submarine channels: implications for the classification of submarine fans. Geology, 20(7): 633–636. doi: 10.1130/0091-7613(1992)020<0633:QAOTGO>2.3.CO;2
|
Clark J D, Pickering K T. 1996. Architectural elements and growth patterns of submarine channels: application to hydrocarbon exploration. AAPG Bulletin, 80(2): 194–220
|
Dai Zhijun, Liu James T, Fu Gui, et al. 2013. A thirteen-year record of bathymetric changes in the North Passage, Changjiang (Yangtze) estuary. Geomorphology, 187: 101–107. doi: 10.1016/j.geomorph.2013.01.004
|
Dai Zhijun, Mei Xuefei, Darby S E, et al. 2018. Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system. Journal of Hydrology, 566: 719–734. doi: 10.1016/j.jhydrol.2018.09.019
|
D’Alpaos A, Ghinassi M, Finotello A, et al. 2017. Tidal meander migration and dynamics: a case study from the Venice Lagoon. Marine and Petroleum Geology, 87: 80–90. doi: 10.1016/j.marpetgeo.2017.04.012
|
Deptuck M E, Steffens G S, Barton M, et al. 2003. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea. Marine and Petroleum Geology, 20(6–8): 649–676
|
Deptuck M E, Sylvester Z, Pirmez C, et al. 2007. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24(6–9): 406–433
|
Dott R H. 1963. Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47(1): 104–128
|
Gabet E J. 1998. Lateral migration and bank erosion in a saltmarsh tidal channel in San Francisco Bay, California. Estuaries, 21(4): 745–753. doi: 10.2307/1353278
|
Gamboa D, Alves T M. 2015. Spatial and dimensional relationships of submarine slope architectural elements: A seismic-scale analysis from the Espírito Santo Basin (SE Brazil). Marine and Petroleum Geology, 64: 43–57. doi: 10.1016/j.marpetgeo.2015.02.035
|
Gee M J R, Gawthorpe R L. 2006. Submarine channels controlled by salt tectonics: examples from 3D seismic data offshore Angola. Marine and Petroleum Geology, 23(4): 443–458. doi: 10.1016/j.marpetgeo.2006.01.002
|
Gee M J R, Gawthorpe R L, Bakke K, et al. 2007. Seismic geomorphology and evolution of submarine channels from the Angolan continental margin. Journal of Sedimentary Research, 77(5): 433–446. doi: 10.2110/jsr.2007.042
|
Giba M, Walsh J J, Nicol A, et al. 2013. Investigation of the spatio-temporal relationship between normal faulting and arc volcanism on million-year time scales. Journal of the Geological Society, 170(6): 951–962. doi: 10.1144/jgs2012-121
|
Harishidayat D, Omosanya K O, Johansen S E. 2015. 3D seismic interpretation of the depositional morphology of the middle to late Triassic fluvial system in eastern Hammerfest Basin, Barents Sea. Marine and Petroleum Geology, 68: 470–479. doi: 10.1016/j.marpetgeo.2015.09.007
|
Higgs K E, Arnot M J, Browne G H, et al. 2010. Reservoir potential of late cretaceous terrestrial to shallow marine sandstones, Taranaki Basin, New Zealand. Marine and Petroleum Geology, 27(9): 1849–1871. doi: 10.1016/j.marpetgeo.2010.08.002
|
Hudson P F, Kesel R H. 2000. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology, 28(6): 531–534. doi: 10.1130/0091-7613(2000)28<531:CMAMCI>2.0.CO;2
|
Janocko M, Nemec W, Henriksen S, et al. 2013. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology, 41: 7–34. doi: 10.1016/j.marpetgeo.2012.06.012
|
Khripounoff A, Vangriesheim A, Babonneau N, et al. 2003. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth. Marine Geology, 194(3–4): 151–158
|
King P R. 2000. New Zealand’s changing configuration in the last 100 million years: plate tectonics, basin development, and depositional setting. In: 2000 New Zealand Petroleum Conference Proceedings. Wellington: Crown Minerals, Ministry of Commerce Wellington, New Zealand
|
King P R, Thrasher G P. 1996. Cretaceous-Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand [dissertation]. Lower Hutt: Institute of Geological & Nuclear Sciences
|
Kolla V. 2007. A review of sinuous channel avulsion patterns in some major deep-sea fans and factors controlling them. Marine and Petroleum Geology, 24(6–9): 450–469
|
Labourdette R. 2007. Integrated three-dimensional modeling approach of stacked turbidite channels. AAPG Bulletin, 91(11): 1603–1618. doi: 10.1306/06210706143
|
Li Quan, Wu Wei, Yu Shui, et al. 2017a. The application of three-dimensional seismic spectral decomposition and semblance attribute to characterizing the Deepwater channel depositional elements in the Taranaki Basin of New Zealand. Acta Oceanologica Sinica, 36(9): 79–86. doi: 10.1007/s13131-017-1113-0
|
Li Lei, Yan Rui, Li Ningtao, et al. 2015. Characteristics and origin of deep-water channels in Rio Muni Basin, West Africa. Geoscience (in Chinese), 29(1): 80–88
|
Li Quan, Yu Shui, Wu Wei, et al. 2017b. Detection of a deep-water channel in 3D seismic data using the sweetness attribute and seismic geomorphology: a case study from the Taranaki Basin, New Zealand. New Zealand Journal of Geology and Geophysics, 60(3): 199–208. doi: 10.1080/00288306.2017.1307230
|
Li Lei, Zou Yun, Zhang Peng, et al. 2019. Quantitative analysis of the geometry of sinuous submarine channels: a case from the Rio Muni Basin of Equatorial Guinea. Marine Geology Frontiers (in Chinese), 35(10): 23–35
|
Liu Xinying, Yu Shui, Hu Xiaolin, et al. 2012. Quantitative relation between the gradient and sinuosity of Deepwater channel and its control: a case study in the Rio Muni Basin, West Africa. Journal of Jilin University (Earth Science Edition) (in Chinese), 42(S1): 127–134
|
Lowe D R, Graham S A, Malkowski M A, et al. 2019. The role of avulsion and splay development in deep-water channel systems: sedimentology, architecture, and evolution of the deep-water Pliocene Godavari “A” channel complex, India. Marine and Petroleum Geology, 105: 81–99. doi: 10.1016/j.marpetgeo.2019.04.010
|
Malkowski M A, Jobe Z R, Sharman G R, et al. 2018. Down-slope facies variability within deep-water channel systems: insights from the Upper Cretaceous Cerro Toro Formation, southern Patagonia. Sedimentology, 65(6): 1918–1946. doi: 10.1111/sed.12452
|
Masalimova L U, Lowe D R, Sharman G R, et al. 2016. Outcrop characterization of a submarine channel-lobe complex: the lower mount messenger formation, Taranaki Basin, New Zealand. Marine and Petroleum Geology, 71: 360–390. doi: 10.1016/j.marpetgeo.2016.01.004
|
Mayall M, Jones E, Casey M. 2006. Turbidite channel reservoirs-Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8): 821–841. doi: 10.1016/j.marpetgeo.2006.08.001
|
McHargue T, Pyrcz M J, Sullivan M D, et al. 2011. Architecture of turbidite channel systems on the continental slope: patterns and predictions. Marine and Petroleum Geology, 28(3): 728–743. doi: 10.1016/j.marpetgeo.2010.07.008
|
Mei Xuefei, Dai Zhijun, Wei Wen, et al. 2018. Secular bathymetric variations of the North Channel in the Changjiang (Yangtze) Estuary, China, 1880–2013: causes and effects. Geomorphology, 303: 30–40. doi: 10.1016/j.geomorph.2017.11.014
|
Mutti E, Normark W R. 1987. Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Leggett J K, Zuffa G G, eds. Marine Clastic Sedimentology. Dordrecht: Springer, 1–38
|
Niyazi Y, Eruteya O E, Omosanya K O, et al. 2018. Seismic geomorphology of submarine channel-belt complexes in the Pliocene of the Levant Basin, offshore central Israel. Marine Geology, 403: 123–138. doi: 10.1016/j.margeo.2018.05.007
|
Peakall J, McCaffrey B, Kneller B. 2000. A process model for the evolution, morphology, and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70(3): 434–448. doi: 10.1306/2DC4091C-0E47-11D7-8643000102C1865D
|
Pichevin L, Bertrand P, Boussafir M, et al. 2004. Organic matter accumulation and preservation controls in a deep sea modern environment: an example from Namibian slope sediments. Organic Geochemistry, 35(5): 543–559. doi: 10.1016/j.orggeochem.2004.01.018
|
Pirmez C, Imran J. 2003. Reconstruction of turbidity currents in Amazon channel. Marine and Petroleum Geology, 20(6–8): 823–849
|
Posamentier H W. 2003. Depositional elements associated with a basin floor channel-levee system: case study from the Gulf of Mexico. Marine and Petroleum Geology, 20(6–8): 677–690
|
Qin Yongpeng, Alves T M, Constantine J, et al. 2016. Quantitative seismic geomorphology of a submarine channel system in SE Brazil (Espírito Santo Basin): scale comparison with other submarine channel systems. Marine and Petroleum Geology, 78: 455–473. doi: 10.1016/j.marpetgeo.2016.09.024
|
Reimchen A P, Hubbard S M, Stright L, et al. 2016. Using sea-floor morphometrics to constrain stratigraphic models of sinuous submarine channel systems. Marine and Petroleum Geology, 77: 92–115. doi: 10.1016/j.marpetgeo.2016.06.003
|
Rotzien J R. 2013. Processes of sedimentation, stratigraphic architecture, and provenance of deep-water depositional systems: the upper Miocene Upper Mount messenger formation, Taranaki Basin, New Zealand and Pliocene Repetto and Pico formations, Ventura Basin, California [dissertation]. Stanford: Stanford University, 218
|
Rotzien J R, Lowe D R, King P R, et al. 2014. Stratigraphic architecture and evolution of a deep-water slope channel-levee and overbank apron: the Upper Miocene Upper Mount Messenger Formation, Taranaki Basin. Marine and Petroleum Geology, 52: 22–41. doi: 10.1016/j.marpetgeo.2014.01.006
|
Stagpoole V M, Hill M, Thornton S, et al. 2002. New Zealand Basin development and depositional systems evolution: quantification and Visualisation. In: 2002 New Zealand Petroleum Conference Proceedings. Auckland: GNS Science, 351–362
|
Straub K M, Mohrig D, Buttles J, et al. 2011. Quantifying the influence of channel sinuosity on the depositional mechanics of channelized turbidity currents: a laboratory study. Marine and Petroleum Geology, 28(3): 744–760. doi: 10.1016/j.marpetgeo.2010.05.014
|
Sutherland R. 1999. Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data. Tectonophysics, 308(3): 341–362. doi: 10.1016/S0040-1951(99)00108-0
|
Tek D E, McArthur A D, Poyatos-Moré M, et al. 2022. Controls on the architectural evolution of deep-water channel overbank sediment wave fields: insights from the Hikurangi Channel, offshore New Zealand. New Zealand Journal of Geology and Geophysics, 65(1): 141–178. doi: 10.1080/00288306.2021.1978509
|
Uruski C I. 2008. Deepwater Taranaki, New Zealand: structural development and petroleum potential. Exploration Geophysics, 39(2): 94–107. doi: 10.1071/EG08013
|
Uruski C I. 2010. New Zealand’s Deepwater frontier. Marine and Petroleum Geology, 27(9): 2005–2026. doi: 10.1016/j.marpetgeo.2010.05.010
|
Wynn R B, Cronin B T, Peakall J. 2007. Sinuous deep-water channels: Genesis, geometry and architecture. Marine and Petroleum Geology, 24(6–9): 341–387
|
Xu Jie, Snedden J W, Galloway W E, et al. 2017. Channel-belt scaling relationship and application to early Miocene source-to-sink systems in the Gulf of Mexico Basin. Geosphere, 13(1): 179–200. doi: 10.1130/GES01376.1
|
Yao Yue, Zhou Jiangyu, Lei Zhenyu, et al. 2018. High restriction seismic facies and inner structural segmentation features of the central canyon channel systems in Xisha trough basin. Acta Sedimentologica Sinica (in Chinese), 36(4): 787–795
|
Zhao Xiaoming, Liu Li, Tan Chengpeng, et al. 2018a. Styles of submarine-channel architecture and its controlling factors: a case study from the Niger Delta Basin slope. Journal of Palaeogeography (in Chinese), 20(5): 825–840
|
Zhao Xiaoming, Qi Kun, Liu Li, et al. 2018b. Development of a partially-avulsed submarine channel on the Niger Delta continental slope: architecture and controlling factors. Marine and Petroleum Geology, 95: 30–49. doi: 10.1016/j.marpetgeo.2018.04.015
|
Zhou Xiaoyan, Dai Zhijun, Mei Xuefei. 2020. The multi-decadal morphodynamic changes of the mouth bar in a mixed fluvial-tidal estuarine channel. Marine Geology, 429: 106311. doi: 10.1016/j.margeo.2020.106311
|
Zucker E, Gvirtzman Z, Steinberg J, et al. 2017. Diversion and morphology of submarine channels in response to regional slopes and localized salt tectonics, Levant Basin. Marine and Petroleum Geology, 81: 98–111. doi: 10.1016/j.marpetgeo.2017.01.002
|