Volume 42 Issue 5
May  2023
Turn off MathJax
Article Contents
Niyati G. Kalangutkar, Sridhar D. Iyer. Petrographical and mineral chemistry evidence to delineate the source/sources of the Central Indian Ocean Basin pumices[J]. Acta Oceanologica Sinica, 2023, 42(5): 102-116. doi: 10.1007/s13131-022-2062-9
Citation: Niyati G. Kalangutkar, Sridhar D. Iyer. Petrographical and mineral chemistry evidence to delineate the source/sources of the Central Indian Ocean Basin pumices[J]. Acta Oceanologica Sinica, 2023, 42(5): 102-116. doi: 10.1007/s13131-022-2062-9

Petrographical and mineral chemistry evidence to delineate the source/sources of the Central Indian Ocean Basin pumices

doi: 10.1007/s13131-022-2062-9
More Information
  • Corresponding author: E-mail: niyati@unigoa.ac.in
  • Received Date: 2021-07-16
  • Accepted Date: 2022-06-27
  • Available Online: 2023-03-13
  • Publish Date: 2023-05-25
  • We present data pertaining to mineral assemblages and composition of the Central Indian Ocean Basin (CIOB) pumices. Eight groups of pumices were identified considering the presence of phenocrysts of plagioclase, clinopyroxene, orthopyroxene, hornblende and biotite together with the occurrence of quartz and glass. Pigeonite, fayalite and ulvospinelare reported for the first time from these pumices. In the eight groups, the modal percentage of the constituents are phenocrysts 3% to 19% (avg 9.6%), silicic glass 33% to 54% (avg 43%) and the rest is vesicles. Based on the above factors we have identified the possible sources of the CIOB pumices. The mineral compositions of plagioclase, pyroxenes, and biotite of the CIOB pumices were compared with those of Krakatau and Toba. Most of the plagioclase and pyroxene compositions resemble the Haranggoal Dacite Tuff of Toba and Krakatau. Considering the mineral assemblages and compositions, there are pumices which do not correlate to any of the above eruptions and are probably from yet unidentified source/sources. These sources could either be from nearby terrestrial volcanoes or intraplate seamounts present in the CIOB. In a global context, it is viable that petrological characteristics could be used as initial criteria to determine the source of pumices that occur at abyssal depths in the world ocean.
  • loading
  • Allègre C J, Provost A, Jaupart C. 1981. Oscillatory zoning: a pathological case of crystal growth. Nature, 294(5838): 223–228. doi: 10.1038/294223a0
    Almeev R R, Ariskin A A. 1996. Mineral-melt equilibria in a hydrous basaltic system: computer modeling. Geochemistry International, 34(7): 563–573
    Amonkar A, Iyer S D, Babu E V S S K, et al. 2020. Extending the limit of widespread dispersed Toba volcanic glass shards and identification of new in-situ volcanic events in the Central Indian Ocean Basin. Journal of Earth System Science, 129(1): 175. doi: 10.1007/s12040-020-01429-6
    Beard J S, Ragland P C, Rushmer T. 2004. Hydration crystallization reactions between anhydrous minerals and hydrous melt to yield amphibole and biotite in igneous rocks: Description and Implications. The Journal of Geology, 112(5): 617–621. doi: 10.1086/422670
    Binard N, Hékinian R, Cheminée J L, et al. 1992. Styles of eruptive activity on intraplate volcanoes in the Society and Austral hot spot regions: bathymetry, petrology, and submersible observations. Journal of Geophysical Research: Solid Earth, 97(B10): 13999–14015. doi: 10.1029/92JB00692
    Bitschene P R, Dehn J, Mehl K W, et al. 1992a. Explosive ocean island volcanism and seamount evolution in the Central Indian Ocean (Kerguelen Plateau). In: Duncan R A, Rea D K, Kidd R B, et al., eds. Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 70: 105–113,
    Bitschene P R, Mehl K W, Schmincke H U. 1992b. Composition and origin of marine ash layers and epiclastic rocks from the Kerguelen Plateau, southern Indian Ocean (Legs 119 and 120). In: Wise S W Jr, Schlich R, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 120: 135–149
    Bitschene P R, Schmincke H U. 1990. Fallout tephra layers: composition and significance. In: Heling D, Rothe P, Förstner U, et al., eds. Sediments and Environmental Geochemistry. Berlin, Heidelberg: Springer-Verlag, 48–82
    Bryan S E, Cook A, Evans J P, et al. 2004. Pumice rafting and faunal dispersion during 2001–2002 in the Southwest Pacific: record of a dacitic submarine explosive eruption from Tonga. Earth and Planetary Science Letters, 227(1–2): 135–154
    Camus G, Gourgaud A, Vincent P M. 1987. Petrologic evolution of Krakatau (Indonesia): Implications for a future activity. Journal of Volcanology and Geothermal Research, 33(4): 299–316. doi: 10.1016/0377-0273(87)90020-5
    Cashman K V, Fiske R S. 1991. Fallout of pyroclastic debris from submarine volcanic eruptions. Science, 253(5017): 275–280. doi: 10.1126/science.253.5017.275
    Chen Zuxing, Zeng Zhigang, Wang Xiaoyuan, et al. 2020. Element and Sr isotope zoning in plagioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales. Lithos, 376–377: 105776,
    Chesner C A. 1998. Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. Journal of Petrology, 39(3): 397–438. doi: 10.1093/petroj/39.3.397
    Chesner C A, Rose W I. 1991. Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera complex, Sumatra, Indonesia. Bulletin of Volcanology, 53(5): 343–356. doi: 10.1007/BF00280226
    Clynne M A. 1999. A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. Journal of Petrology, 40(1): 105–132. doi: 10.1093/petroj/40.1.105
    Cox K G, Bell J D. 1972. A crystal fractionation model for the basaltic rocks of the New Georgia Group, British Solomon Islands. Contributions to Mineralogy and Petrology, 37(1): 1–13. doi: 10.1007/BF00377302
    Das P, Iyer S D, Kodagali V N. 2007. Morphological characteristics and emplacement mechanism of the seamounts in the Central Indian Ocean Basin. Tectonophysics, 443(1–2): 1–18,
    Fisk M R. 1984. Depths and temperatures of mid-ocean-ridge magma chambers and the composition of their source magmas. Geological Society, London, Special Publications, 13(1): 17–23,
    Fiske R S, Cashman K V, Shibata A, et al. 1998. Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of 1952–1953. Bulletin of Volcanology, 59(4): 262–275. doi: 10.1007/s004450050190
    Fouquet Y, von Stackelberg U, Charlou J L, et al. 1991. Hydrothermal activity in the Lau back-arc basin: sulfides and water chemistry. Geology, 19(4): 303–306. doi: 10.1130/0091-7613(1991)019<0303:HAITLB>2.3.CO;2
    Frey F A, Coffin M F, Wallace P J, et al. 2000. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth and Planetary Science Letters, 176(1): 73–89. doi: 10.1016/S0012-821X(99)00315-5
    Frick C, Kent L E. 1984. Drift pumice in the Indian and South Atlantic oceans. South African Journal of Geology, 87(1): 19–33
    Ginibre C, Wörner G, Kronz A. 2007. Crystal zoning as an archive for magma evolution. Elements, 3(4): 261–266. doi: 10.2113/gselements.3.4.261
    Guo Kun, Zhai Shikui, Wang Xiaoyuan, et al. 2018. The dynamics of the southern Okinawa Trough magmatic system: New insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks. Chemical Geology, 497: 146–161. doi: 10.1016/j.chemgeo.2018.09.002
    Halbach P, Koschinsky A, Seifert R, et al. 1989. Diffuse hydrothermal fluid activity, biological communities, and mineral formation in the North Fiji Basin (SW Pacific): Preliminary results of the R/V Sonne Cruise SO-134. Interridge News, 8: 38–44
    Head J W III, Wilson L. 2003. Deep submarine pyroclastic eruptions: Theory and predicted landforms and deposits. Journal of Volcanology and Geothermal Research, 121(3–4): 155–193,
    Hédervari P. 1982. A possible submarine volcano near the central part of Ninety-East Ridge, Indian Ocean. Journal of Volcanology and Geothermal Research, 13(3–4): 199–211,
    Hibbard M J. 1981. The magma mixing origin of mantled feldspars. Contributions to Mineralogy and Petrology, 76(2): 158–170. doi: 10.1007/BF00371956
    Iyer S D. 1996. A study of the volcanics of the Central Indian Ocean Basin and their relationship to the ferromanganese deposits [dissertation]. Kolkata: Jadavpur University
    Iyer S D, Amonkar A A, Das P. 2018. Genesis of Central Indian Ocean basin seamounts: morphological, petrological, and geochemical evidence. International Journal of Earth Sciences, 107(7): 2517–2538. doi: 10.1007/s00531-018-1612-z
    Iyer S D, Banerjee R. 1998. Importance of plagioclase morphology and composition in magmagenesis of the Carlsberg Ridge basalts. Journal of Indian Geophysical Union, 1(2): 63–72
    Iyer S D, Karisiddaiah S M. 1988. Morphology and petrography of pumice from the Central Indian Ocean Basin. Indian Journal of Marine Science, 17: 333–334
    Iyer S D, Prasad M S, Gupta S M, et al. 1997. Evidence for recent hydrothermal activity in the Central Indian Basin. Deep-Sea Research Part I: Oceanographic Research Papers, 44(7): 1167–1184. doi: 10.1016/S0967-0637(97)00001-0
    Iyer S D, Sudhakar M. 1993. Coexistence of pumice and manganese nodule fields—evidence for submarine silicic volcanism in the Central Indian Basin. Deep-Sea Research Part I: Oceanographic Research Papers, 40(5): 1123–1129. doi: 10.1016/0967-0637(93)90092-H
    Iyer S D, Sudhakar M. 1995. Evidences for a volcanic province in the Central Indian Basin. Journal of Geological Society of India, 46: 353–358
    Kalangutkar N G. 2012. Petrology and petrogenesis of pumice from Central Indian Ocean Basin [dissertation]. Goa: Goa University
    Kalangutkar N G, Iyer S D. 2012. Submarine silicic volcanism: Processes and products. Geo-Spectrum Interface, 6(1): 30–39
    Kalangutkar N G, Iyer S D, Ilangovan D. 2011. Physical properties, morphology and petrological characteristics of pumices from the Central Indian Ocean Basin. Acta Geologica Sinica, 85(4): 826–839. doi: 10.1111/j.1755-6724.2011.00488.x
    Kalangutkar N G, Iyer S D, Mascarenhas-Pereira M B L, et al. 2015. Hydrothermal signature in ferromanganese oxide coatings on pumice from the Central Indian Ocean Basin. Geo-Marine Letters, 35(3): 221–235. doi: 10.1007/s00367-015-0402-x
    Kano K. 2003. Subaqueous pumice eruptions and their products: A review. In: White J D L, Smellie J L, Clague D A, eds. Explosive Subaqueous Volcanism. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 140: 213–229
    Kato Y. 1987. Woody pumice generated with submarine eruption. Journal of Geological Society of Japan, 93(1): 11–20
    Kidd R B, Ramsay A T S, Sykes T J S, et al. 1992. An Indian Ocean framework for paleoceanographic synthesis based on DSDP and ODP results. In: Duncan R A, Rea D K, Kidd R B, et al., eds. Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 70: 403–422,
    Kimura S, Muan A. 1971. Phase relations in the system CaO-iron oxide-TiO2 in air. American Mineralogist: Journal of Earth and Planetary Materials, 56(7–8), 1332–1346
    Kodagali V N. 1998. A pair of seamount chains in the Central Indian Basin, identified from multibeam mapping. Marine Geodesy, 21(2): 147–158. doi: 10.1080/01490419809388130
    Kokelaar P, Busby C. 1992. Subaqueous explosive eruption and welding of pyroclastic deposits. Science, 257(5067): 196–201. doi: 10.1126/science.257.5067.196
    Lonsdale P, Hawkins J. 1985. Silicic volcanism at an off-axis geothermal field in the Mariana Trough back-arc basin. Geological Society of American Bulletin, 96(7): 940–951. doi: 10.1130/0016-7606(1985)96<940:SVAAOG>2.0.CO;2
    Martín-Barajas A, Lallier-Verges E. 1993. Ash layers and pumice in the Central Indian Basin: relationship to the formation of manganese nodules. Marine Geology, 115(3–4): 307–329,
    Mascarenhas-Pereira M B L, Nath B N, Borole D V, et al. 2006. Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin. Marine Geology, 229(1–2): 79–90,
    Mudholkar A, Fujii T. 1995. Fresh pumice from the Central Indian Basin: A Krakatau 1883 signature. Marine Geology, 125(1–2): 143–151,
    Mueller W, White J D L. 1992. Felsic fire-fountaining beneath Archean seas: Pyroclastic deposits of the 2730 Ma Hunter Mine Group, Quebec, Canada. Journal of Volcanology and Geothermal Research, 54(1–2): 117–134,
    Mukherjee A D, Iyer S D. 1999. Synthesis of morphotectonics and volcanics of the Central Indian Ocean Basin. Current Science, 76(3): 296–304
    Mukhopadhyay R, Ghosh A K, Iyer S D. 2018. The Indian Ocean Nodule Field: Geology and Resource Potential. 2nd ed. Amsterdam: Elsevier
    Müller A, Breiter K, Seltmann R, et al. 2005. Quartz and feldspar zoning in the eastern Erzgebirge Volcano–Plutonic Complex (Germany, Czech Republic): evidence of multiple magma mixing. Lithos, 80(1–4): 201–227,
    Neumann von Padang M. 1967. Catalogue of active volcanoes of the world part xxi Atlantic Ocean. Roma: International Association of Volcanology, 128
    Oba N, Tomita K, Yamamoto M, et al. 1983. Geochemical study of volcanic products, in particular to pumice flow, of the Krakatau Group, Indonesia. Reports of the Faculty of Science, Kagoshima University (Earth Sciences and Biology), (16): 21–41
    Pal T, Mitra S K, Sengupta S, et al. 2007. Dacite–andesites of Narcondam volcano in the Andaman Sea—an imprint of magma mixing in the inner arc of the Andaman–Java subduction system. Journal of Volcanology and Geothermal Research, 168(1–4): 93–113,
    Pattan J N, Mudholkar A V, Jai Sankar S, et al. 2008. Drift pumice in the Central Indian Ocean Basin: Geochemical evidence. Deep-Sea Research Part I: Oceanographic Research Papers, 55(3): 369–378. doi: 10.1016/j.dsr.2007.12.005
    Pattan J N, Parthiban G, Moraes C, et al. 2016. A note on chemical composition and origin of ferromanganese oxide coated and uncoated pumice samples from Central Indian Ocean Basin. Journal of the Geological Society of India, 87(1): 62–68. doi: 10.1007/s12594-016-0374-0
    Pattan J N, Pearce N J G, Parthiban G, et al. 2013. The origin of ferro-manganese oxide coated pumice from the Central Indian Ocean Basin. Quaternary International, 313–314: 230–239,
    Poulsen H F, Neuefeind J, Neumann H B, et al. 1995. Amorphous silica studied by high energy X-ray diffraction. Journal of Non-Crystalline Solids, 188(1–2): 63–74,
    Ray J S, Pande K, Awasthi N. 2013. A minimum age for the active Barren Island volcano, Andaman Sea. Current Science, 104(7): 934–939
    Ray D, Rajan S, Ravindra R, et al. 2011. Microtextural and mineral chemical analyses of andesite–dacite from Barren and Narcondam islands: Evidences for magma mixing and petrological implications. Journal of Earth System Science, 120(1): 145–155. doi: 10.1007/s12040-011-0006-4
    Risso C, Scasso R A, Aparicio A. 2002. Presence of large pumice blocks on Tierra del Fuego and South Shetland Islands shorelines, from 1962 South Sandwich Islands eruption. Marine Geology, 186(3–4): 413–422,
    Schott F, McCreary J P. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51: 1–123. doi: 10.1016/S0079-6611(01)00083-0
    Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3–4): 117–137,
    Sigurdsson H, Sparks R S J, Carey S N, et al. 1980. Volcanogenic sedimentation in the Lesser Antilles Arc. The Journal of Geology, 88(5): 523–540. doi: 10.1086/628542
    Sukumaran N P, Banerjee R, Borole D V, et al. 1998. Some aspects of volcanic ash layers in the Central Indian Basin. Geo-Marine Letters, 18(3): 203–208. doi: 10.1007/s003670050069
    Svalnov V N. 1981. The effect of island volcanism in the Indian Ocean. Oceanology, 21: 606–612
    Vance J A. 1965. Zoning in igneous plagioclase: patchy zoning. The Journal of Geology, 73(4): 636–651. doi: 10.1086/627099
    Whitham A G, Sparks R S J. 1986. Pumice. Bulletin of Volcanology, 48(4): 209–223. doi: 10.1007/bf01087675
    Wilson C J N, Blake S, Charlier B L A, et al. 2006. The 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand: Development, characteristics and evacuation of a large rhyolitic magma body. Journal of Petrology, 47(1): 35–69. doi: 10.1093/petrology/egi066
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(9)

    Article Metrics

    Article views (428) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return