Volume 42 Issue 5
May  2023
Turn off MathJax
Article Contents
Ke Wang, Shikui Zhai, Zenghui Yu, Huaijing Zhang. Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau[J]. Acta Oceanologica Sinica, 2023, 42(5): 117-129. doi: 10.1007/s13131-022-2069-2
Citation: Ke Wang, Shikui Zhai, Zenghui Yu, Huaijing Zhang. Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau[J]. Acta Oceanologica Sinica, 2023, 42(5): 117-129. doi: 10.1007/s13131-022-2069-2

Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau

doi: 10.1007/s13131-022-2069-2
Funds:  The National Science and Technology Major Project under contract No. 2011ZX05025-002-03; the Project of China National Offshore Oil Corporation (CNOOC) Limited under contract No. CCL2013ZJFNO729; the National Natural Science Foundation of China under contract No. 41530963.
More Information
  • Corresponding author: zhai2000@ouc.edu.cn
  • Received Date: 2021-12-20
  • Accepted Date: 2022-07-05
  • Available Online: 2023-03-14
  • Publish Date: 2023-05-25
  • Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas. The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades. To explore the information on the sedimentary paleoenvironment, provenance changes and uplift of Tibetan Plateau contained in core sediments (debris), we selected core samples from Well LS33 in the Qiongdongnan Basin, South China Sea, and analyzed the contents of typical elements (Al, Th, and rare earth elements) that can indicate changes in provenance and the Sr isotopic compositions, which can reveal the geochemical characteristics of the paleoseawater depending on the type of material (authigenic carbonate and terrigenous detritus). The results show the following: (1) during the late Miocene, the Red River transported a large amount of detrital sediments from the ancient continental block (South China) to the Qiongdongnan Basin. (2) The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene. These ratios reflect the semi-closed marginal sea environment of the South China Sea (relative to the ocean) and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal. (3) Since the Neogene, the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin. These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau, which influence the Sr isotope composition of seawater.
  • loading
  • Bagherpour B, Bucher H, Schneebeli-Hermann E, et al. 2018. Early Late Permian coupled carbon and strontium isotope chemostratigraphy from South China: Extended Emeishan volcanism?. Gondwana Research, 58: 58–70. doi: 10.1016/j.gr.2018.01.011
    Bi Dongjie, Zhang Daojun, Zhai Shikui, et al. 2017. The coupling relationships among the Qinghai-Tibet Plateau uplifting, the Qiongdongnan Basin subsiding and the Xisha Islands’ Reefs developing. Haiyang Xuebao (in Chinese), 39(1): 52–63
    Bi Dongjie, Zhang Daojun, Zhai Shikui, et al. 2019. Seawater 87Sr/86Sr values recorded by reef carbonates from the Xisha Islands (South China Sea) since the Neogene and its response to the uplift of Qinghai-Tibetan Plateau. Geological Journal, 54(6): 3878–3890. doi: 10.1002/gj.3386
    Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299–6328. doi: 10.1029/92JB02280
    Cai Guofu, Shao Lei, Qiao Peijun, et al. 2013. Marine transgression and evolution of depositional environment in the Paleogene strata of Qiongdongnan Basin, South China Sea. Acta Petrolei Sinica (in Chinese), 34(S2): 91–101
    Cao Licheng, Jiang Tao, Wang Zhenfeng, et al. 2013. Characteristics of heavy minerals and their implications for Neogene provenances evolution in Qiongdongnan Basin. Journal of Central South University (Science and Technology) (in Chinese), 44(5): 1971–1981
    Chen Kui. 2012. Sediment source analysis of oil and gas objective strata in the Qiongdongnan Basin (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Chen Hongyan, Sun Zhipeng, Zhai Shikui, et al. 2015. Analysis of well-seismic stratigraphic correlation and establishment of regional stratigraphic framework in the Qiongdongnan Basin of northern South China Sea. Haiyang Xuebao (in Chinese), 37(5): 1–14
    DePaolo D J. 1986. Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. Geology, 14(2): 103–106. doi: 10.1130/0091-7613(1986)14<103:DROTNS>2.0.CO;2
    Derry L A, Keto L S, Jacobsen S B, et al. 1989. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta, 53(9): 2331–2339. doi: 10.1016/0016-7037(89)90355-4
    Du Tongjun. 2013. Sequence stratigraphic and deep water sedimentary characteristic in the Qiongdongnan Basin (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Edwards C T, Saltzman M R, Leslie S A, et al. 2015. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. Geological Society of America Bulletin, 127(9–10): 1275–1289
    Gong Chenglin, Wang Yingmin, Zhu Weilin, et al. 2011. The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, 28(9): 1690–1702. doi: 10.1016/j.marpetgeo.2011.06.005
    Harris N. 1995. Significance of weathering Himalayan metasedimentary rocks and leucogranites for the Sr isotope evolution of seawater during the early Miocene. Geology, 23(9): 795–798. doi: 10.1130/0091-7613(1995)023<0795:SOWHMR>2.3.CO;2
    Holloway N H. 1982. North Palawan block, Philippines-its relation to Asian mainland and role in evolution of South China Sea. American Association of Petroleum Geologists Bulletin, 66(9): 1355–1383
    Huang Wei, Wang Pinxian. 2006. Sediment mass and distribution in the South China Sea since the Oligocene. Science in China Series D: Earth Sciences, 49(11): 1147–1155. doi: 10.1007/s11430-006-2019-4
    Hutchison C. 1989. Geological Evolution of Southeast Asia. Oxford: Clarendon Press
    Jiang Xiaodian, Li Zhengxiang. 2014. Seismic reflection data support episodic and simultaneous growth of the Tibetan Plateau since 25 Myr. Nature Communications, 5: 5453,
    Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1–4): 27–49
    Kroeger K F, Reuter M, Forst M H, et al. 2007. Eustasy and sea water Sr composition: application to high-resolution Sr-isotope stratigraphy of Miocene shallow-water carbonates. Sedimentology, 54(3): 565–585. doi: 10.1111/j.1365-3091.2006.00849.x
    Le Guerroué E, Allen P A, Cozzi A. 2006. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram formation (Nafun Group, Oman). Precambrian Research, 146(1–2): 68–92
    Lei Chao, Ren Jianye, Pei Jianxiang, et al. 2011. Tectonic framework and multiple episode tectonic evolution in deepwater area of Qiongdongnan Basin, northern continental margin of South China Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 36(1): 151–162
    Lei Chao, Ren Jianye, Zhang Jing. 2015. Tectonic province divisions in the South China Sea: implications for basin geodynamics. Earth Science-Journal of China University of Geosciences (in Chinese), 40(4): 744–762. doi: 10.3799/dqkx.2015.062
    Li Tingdong. 1995. The uplifting process and mechanism of the Qinhai-Tibet Plateau. Acta Geoscientia Sinica (in Chinese), 16(1): 1–9
    Li Na. 2013. The sedimentary paleoenvironment and provenance analysis in deepwater area of Qiongdongnan Basin since Oligocene (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Liu Xiaofeng. 2015. The evolution of sedimentary paleoenvironment and provenance in the deepwater area of the Qiongdongnan Basin (in Chinese) [Dissertation]. Qingdao: Ocean University of China
    Liu Xiaofeng, Sun Zhipeng, Liu Xinyu, et al. 2018. Chronostratigraphic framework based on micro-paleontological data from drilling LS33a in deep water area of northern South China Sea. Acta Sedimentologica Sinica (in Chinese), 36(5): 890–902
    Liu Xinyu, Xie Jinyou, Zhang Huolan, et al. 2009. Chronostratigraphy of planktonic foraminifera in the Yinggehai-Qiongdongnan Basin. Acta Micropalaeontologica Sinica (in Chinese), 26(2): 181–192
    Liu Xiaofeng, Zhang Daojun, Zhai Shikui, et al. 2015. A heavy mineral viewpoint on sediment provenance and environment in the Qiongdongnan Basin. Acta Oceanologica Sinica, 34(4): 41–55. doi: 10.1007/s13131-015-0648-1
    Luo Zhaohua, Mo Xuanxue, Hou Zengqian, et al. 2006. An integrated model for the Cenozoic evolution of the Tibetan Plateau: constraints from igneous rocks. Earth Science Frontiers (in Chinese), 13(4): 196–211
    McArthur J M, Burnett J, Hancock J M. 1992. Strontium isotopes at K/T boundary. Nature, 355(6355): 28. doi: 10.1038/355028a0
    Mi Lijun, Yuan Yusong, Zhang Gongcheng, et al. 2009. Characteristics and genesis of geothermal field in deep-water area of the northern South China Sea. Acta Petrolei Sinica (in Chinese), 30(1): 27–32
    Milliman J D, Syvitski J P M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100(5): 525–544. doi: 10.1086/629606
    Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth & Planetary Science Letters, 92(1): 11–26
    Palmer M R, Elderfield H. 1985. Sr isotope composition of sea water over the past 75 Myr. Nature, 314(6011): 526–528. doi: 10.1038/314526a0
    Prokoph A, Shields G A, Veizer J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 87(3–4): 113–133
    Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Scientific Technical, 48–51
    Ruppel S C, James E W, Barrick J E, et al. 1996. High-resolution 87Sr/86Sr chemostratigraphy of the Silurian: Implications for event correlation and strontium flux. Geology, 24(9): 831–834. doi: 10.1130/0091-7613(1996)024<0831:HRSSCO>2.3.CO;2
    Shao Lei, Cui Yuchi, Qiao Peijun, et al. 2019. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution. Journal of Palaeogeography (in Chinese), 21(2): 216–231
    Su Ming, Xie Xinong, Xie Yuhong, et al. 2014. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea. Journal of Asian Earth Sciences, 79: 552–563. doi: 10.1016/j.jseaes.2012.12.038
    Sun Zhiguo, Han Changfu, Ju Lianjun, et al. 1997. Comparison between the uplift of the Tibetan Plateau and the sedimentation of coral reefs in Xisha Islands. Marine Sciences (in Chinese), 24(4): 64–67
    Sun Zhuan, Liu Hao, Wu Zhe. 2011. The analysis of Cenozoic tectonic sequence of Qiongdongnan Basin in the South China Sea. Offshore Oil (in Chinese), 31(1): 8–15
    Tian Shanshan. 2010. Tectonic subsidence analysis and paleotopography restoration of postrifting strata in the Qiongdongnan Basin (in Chinese) [dissertation]. Wuhan: China University of Geosciences
    van der Beek P, Van Melle J, Guillot S, et al. 2009. Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geoscience, 2(5): 364–368. doi: 10.1038/ngeo503
    van Hoang L, Wu Fuyuan, Clift P D, et al. 2009. Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 10(11): Q11008
    Wang Pinxian. 1995. ODP and Qinghai/Xizang (Tibetan) Palteau. Advance in Earth Sciences (in Chinese), 10(3): 254–257
    Wang Guocan, Cao Kai, Zhang Kexin, et al. 2011a. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic. Science China Earth Sciences, 54(1): 29–44. doi: 10.1007/s11430-010-4110-0
    Wang Xun, Liu Sheng’ao, Wang Zhengrong, et al. 2018. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 498: 68–82
    Wang Yingmin, Xu Qiang, Li Dong, et al. 2011b. Late Miocene Red River submarine fan, northwestern South China Sea. Chinese Science Bulletin, 56(14): 1488–1494. doi: 10.1007/s11434-011-4441-z
    Wei Kuisheng, Cui Hanyun, Ye Shufen, et al. 2001. High-precision sequence stratigraphy in Qiongdongnan Basin. Earth Science-Journal of China University of Geosciences (in Chinese), 26(1): 59–66
    Xie Xinong, Müller R D, Li Sitian, et al. 2006. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745–765. doi: 10.1016/j.marpetgeo.2006.03.004
    Xiu Chun, Zhai Shikui, Huo Suxia, et al. 2018. Provenance of sediments of the Yacheng Formation in the Lingnan Low Uplift, Qiongdongnan Basin: Evidences from U-Pb dating of detrital zircons and geochemistry of the sediments. Bulletin of Mineralogy, Petrology and Geochemistry (in Chinese), 37(6): 1102–1113
    Xu Qiang, Li Dong, Zhu Weilin, et al. 2020. Shrimp U-Pb ages of detrital zircons: Discussions on provenance control and the Red River capture event. Sedimentary Geology and Tethyan Geology (in Chinese), 40(3): 20–30
    Xu Zhiqin, Yang Jingsui, Li Haibing, et al. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica (in Chinese), 85(1): 1–33. doi: 10.1111/j.1755-6724.2011.00375.x
    Yuan Shengqiang, Wu Shiguo, Yao Genshun. 2010. The controlling factors analysis of Qiongdongnan slope deepwater channels and its significance to the hydrocarbon exploration. Marine Geology and Quaternary Geology (in Chinese), 30(2): 61–66. doi: 10.3724/SP.J.1140.2010.02061
    Zakharov Y D, Dril S I, Shigeta Y, et al. 2018. New aragonite 87Sr/86Sr records of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth. Sedimentary Geology, 364: 1–13. doi: 10.1016/j.sedgeo.2017.11.011
    Zhong Dalai, Ding Lin. 1996. A discussion of the process and mechanism of Tibetan Plateau uplifting. Science in China Series D: Earth Sciences (in Chinese), 26(4): 289–295
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (296) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return