Volume 42 Issue 5
May  2023
Turn off MathJax
Article Contents
Guangbing Yang, Quanan Zheng, Xuejun Xiong. Subthermocline eddies carrying the Indonesian Throughflow water observed in the southeastern tropical Indian Ocean[J]. Acta Oceanologica Sinica, 2023, 42(5): 1-13. doi: 10.1007/s13131-022-2085-2
Citation: Guangbing Yang, Quanan Zheng, Xuejun Xiong. Subthermocline eddies carrying the Indonesian Throughflow water observed in the southeastern tropical Indian Ocean[J]. Acta Oceanologica Sinica, 2023, 42(5): 1-13. doi: 10.1007/s13131-022-2085-2

Subthermocline eddies carrying the Indonesian Throughflow water observed in the southeastern tropical Indian Ocean

doi: 10.1007/s13131-022-2085-2
Funds:  The Shandong Provincial Natural Science Foundation under contract No. ZR2022MD080; the Basic Scientific Fund for National Public Research Institutes of China under contract No. 2017Q01; the National Natural Science Foundation of China (NSFC) under contract Nos 41706038, 41576027, 41376038, and 40406009; the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract Nos U1406405 and U1606405; the International Cooperation Project of Indo-Pacific Ocean Environment Variation and Air-Sea Interaction under contract No. GASI-03-IPOVAI-05; the National Programme on Global Change and Air-Sea Interaction under contract Nos GASI-03-01-01-02 and GASI-IPOVAI-01-05; the Public Science and Technology Research Funds Projects of Ocean under contract No. 2009050240; the National Key Scientific Instrument and Equipment Development Projects under contract No. 2012YQ12003908; the National Science and Technology Major Project under contract No. 2016ZX05057015.
More Information
  • Corresponding author: xiongxj@fio.org.cn
  • Received Date: 2022-04-12
  • Accepted Date: 2022-08-03
  • Available Online: 2023-03-30
  • Publish Date: 2023-05-25
  • We observed a subthermocline eddy (STE) with a cold and fresh core during an observation cruise along a transect of 10°S in the southeastern tropical Indian Ocean (SETIO) in December 2017. The vertical scale, speed radius, and maximum swirl velocity of the STE were about 200 m, 55 km, and 0.5 m/s, respectively. The mean Rossby number and Burger number of the STE were then estimated to be about −0.7 and 2.4, indicating the STE was a submesoscale coherent vortex. The STE core water had characteristics of the Indonesian Throughflow (ITF) water and was distinct from that of surrounding areas. By examining Argo float data, another STE was well captured by five successive profiles of the same Argo float. Both STEs showed significant temperature and salinity anomalies at the σ0=26.0–26.5 kg/m3 surfaces. With the assumption that the low-salinity ITF water parcels could be carried only by surface eddies and the STEs, the Argo profiles, which detected low-salinity ITF water and were located outside a surface eddy, were believed to be inside an STE and were used to analyze the distribution, origin, and generation mechanism of the STE. The results suggested that the STEs carrying ITF water may be generated under topography-current interaction at the eastern coastal waters or under front-induced subduction in the area away from coastal waters. Those STEs may be widely distributed in the SETIO and may play a role in ITF water parcel transport.
  • loading
  • Babanin A V. 2006. On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophysical Research Letters, 33(20): L20605. doi: 10.1029/2006GL027308
    Baird M E, Ridgway K R. 2012. The southward transport of sub-mesoscale lenses of Bass Strait Water in the centre of anti-cyclonic mesoscale eddies. Geophysical Research Letters, 39(2),
    Bashmachnikov I, Neves F, Calheiros T, et al. 2015. Properties and pathways of Mediterranean water eddies in the Atlantic. Progress in Oceanography, 137: 149–172. doi: 10.1016/j.pocean.2015.06.001
    Brainerd K E, Gregg M C. 1993. Diurnal restratification and turbulence in the oceanic surface mixed layer: 1. Observations. Journal of Geophysical Research, 98(C12): 22645–22656. doi: 10.1029/93JC02297
    Brannigan L, Marshall D P, Garabato A C N, et al. 2017. Submesoscale instabilities in mesoscale eddies. Journal of Physical Oceanography, 47(12): 3061–3085. doi: 10.1175/JPO-D-16-0178.1
    Chelton D B, DeSzoeke R A, Schlax M G, et al. 1998. Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography, 28(3): 433–460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    Contreras M, Pizarro O, Dewitte B, et al. 2019. Subsurface mesoscale eddy generation in the ocean off central chile. Journal of Geophysical Research: Oceans, 124(8): 5700–5722. doi: 10.1029/2018JC014723
    D’Asaro E A. 1988. Generation of submesoscale vortices: A new mechanism. Journal of Geophysical Research: Oceans, 93(C6): 6685–6693. doi: 10.1029/JC093iC06p06685
    Feng Ming, Wijffels S. 2002. Intraseasonal variability in the south equatorial current of the East Indian Ocean. Journal of Physical Oceanography, 32(1): 265–277. doi: 10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2
    Godfrey J S. 1996. The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere: A review. Journal of Geophysical Research: Oceans, 101(C5): 12217–12237. doi: 10.1029/95JC03860
    Gordon A L, Susanto R D, Vranes K. 2003. Cool Indonesian Throughflow as a consequence of restricted surface layer flow. Nature, 425(6960): 824–828. doi: 10.1038/nature02038
    Hu Zhentao, Ma Xiao, Peng Yingyu, et al. 2022. A large subsurface anticyclonic eddy in the eastern equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 127(3): e2021JC018130. doi: 10.1029/2021JC018130
    Huang Xiaolong, Jing Zhiyou, Zheng Ruixi, et al. 2020. Dynamical analysis of submesoscale fronts associated with wind-forced offshore jet in the western South China Sea. Acta Oceanologica Sinica, 39(11): 1–12. doi: 10.1007/s13131-020-1671-4
    Huang Chuanjiang, Qiao Fangli. 2010. Wave-turbulence interaction and its induced mixing in the upper ocean. Journal of Geophysical Research: Oceans, 115(C4): C04026. doi: 10.1029/2009JC005853
    Huang Chuanjiang, Qiao Fangli, Dai Dejun, et al. 2012. Field measurement of upper ocean turbulence dissipation associated with wave-turbulence interaction in the South China Sea. Journal of Geophysical Research: Oceans, 117(C11): C00J09. doi: 10.1029/2011JC007806
    Kurian J, Colas F, Capet X, et al. 2011. Eddy properties in the California Current System. Journal of Geophysical Research: Oceans, 116(C8): C08027. doi: 10.1029/2010JC006895
    Li Hong, Xu Fanghua, Zhou Wei, et al. 2017a. Development of a global gridded Argo data set with Barnes successive corrections. Journal of Geophysical Research: Oceans, 122(2): 866–889. doi: 10.1002/2016JC012285
    Li Cheng, Zhang Zhiwei, Zhao Wei, et al. 2017b. A statistical study on the subthermocline submesoscale eddies in the northwestern Pacific Ocean based on Argo data. Journal of Geophysical Research: Oceans, 122(5): 3586–3598. doi: 10.1002/2016JC012561
    Makarim S, Sprintall J, Liu Zhiyu, et al. 2019. Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Scientific Reports, 9(1): 7364. doi: 10.1038/s41598-019-43841-z
    Mcwilliams J C. 2016. Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2189): 20160117,
    Nagai T, Tandon A, Yamazaki H, et al. 2012. Direct observations of microscale turbulence and thermohaline structure in the Kuroshio Front. Journal of Geophysical Research: Oceans, 117(C8): C08013. doi: 10.1029/2011JC007228
    Nof D, Pichevin T, Sprintall J. 2002. “Teddies” and the origin of the leeuwin current. Journal of Physical Oceanography, 32(9): 2571–2588. doi: 10.1175/1520-0485(2002)032<2571:TATOOT>2.0.CO;2
    Pelland N A, Eriksen C C, Lee C M. 2013. Subthermocline eddies over the Washington continental slope as observed by seagliders, 2003–09. Journal of Physical Oceanography, 43(10): 2025–2053. doi: 10.1175/JPO-D-12-086.1
    Qiao Fangli, Yuan Yeli, Deng Jia, et al. 2016. Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065): 20150201,
    Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophysical Research Letters, 31(11): L11303. doi: 10.1029/2004GL019824
    Sarkar S, Pham H T, Ramachandran S, et al. 2016. The interplay between submesoscale instabilities and turbulence in the surface layer of the bay of Bengal. Oceanography, 29(2): 146–157. doi: 10.5670/oceanog.2016.47
    Shapiro G I, Meschanov S L. 1991. Distribution and spreading of Red Sea Water and salt lens formation in the northwest Indian Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 38(1): 21–34. doi: 10.1016/0198-0149(91)90052-H
    Song Qian, Gordon A L, Visbeck M. 2004. Spreading of the Indonesian Throughflow in the Indian Ocean. Journal of Physical Oceanography, 34(4): 772–792. doi: 10.1175/1520-0485(2004)034<0772:SOTITI>2.0.CO;2
    Song Bo, Wang Huizan, Chen Changlin, et al. 2019. Observed subsurface eddies near the Vietnam coast of the South China Sea. Acta Oceanologica Sinica, 38(4): 39–46. doi: 10.1007/s13131-019-1412-8
    Spall M A. 1995. Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. Journal of Geophysical Research, 100(C2): 2543–2557. doi: 10.1029/94JC02860
    Spall M A, Price J F. 1998. Mesoscale variability in Denmark Strait: The PV outflow hypothesis. Journal of Physical Oceanography, 28(8): 1598–1623. doi: 10.1175/1520-0485(1998)028<1598:mvidst>2.0.co;2
    Sprintall J, Wijffels S E, Molcard R, et al. 2009. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research: Oceans, 114(C7): C07001. doi: 10.1029/2008JC005257
    Valsala V K, Ikeda M. 2007. Pathways and effects of the Indonesian Throughflow water in the Indian Ocean using particle trajectory and tracers in an OGCM. Journal of Climate, 20(13): 2994–3017. doi: 10.1175/JCLI4167.1
    Van Sebille E, Sprintall J, Schwarzkopf F U, et al. 2014. Pacific-to-Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO. Journal of Geophysical Research: Oceans, 119(2): 1365–1382. doi: 10.1002/2013JC009525
    Wang Lu, Zhou Lei, Xie Lingling, et al. 2019. Seasonal and interannual variability of water mass sources of Indonesian Throughflow in the Maluku Sea and the Halmahera Sea. Acta Oceanologica Sinica, 38(4): 58–71. doi: 10.1007/s13131-019-1413-7
    Yang Guang, Yu Weidong, Yuan Yeli, et al. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733–6750. doi: 10.1002/2015JC011130
    Yang Guang, Zhao Xia, Li Yuanlong, et al. 2019a. Chlorophyll variability induced by mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Marine Systems, 199: 103209. doi: 10.1016/j.jmarsys.2019.103209
    Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4): 895–907. doi: 10.1175/JPO-D-16-0256.1
    Yang Guangbing, Zheng Quanan, Xiong Xuejun, et al. 2019b. Subsurface cyclonic eddies observed in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 124(10): 7247–7260. doi: 10.1029/2019JC015381
    Yang Guangbing, Zheng Quanan, Yuan Yeli, et al. 2019c. Effect of a mesoscale eddy on surface turbulence at the Kuroshio Front in the East China Sea. Journal of Geophysical Research: Oceans, 124(3): 1763–1777. doi: 10.1029/2018JC014672
    Zhang Zhiwei, Li Peiliang, Xu Lixiao, et al. 2015. Subthermocline eddies observed by rapid-sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014. Geophysical Research Letters, 42(15): 6438–6445. doi: 10.1002/2015GL064601
    Zhang Zhiwei, Liu Zhiyu, Richards K, et al. 2019. Elevated diapycnal mixing by a subthermocline eddy in the western equatorial Pacific. Geophysical Research Letters, 46(5): 2628–2636. doi: 10.1029/2018GL081512
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
    Zhang Xincheng, Zhang Zhiwei, McWilliams J C, et al. 2022. Submesoscale coherent vortices observed in the northeastern South China Sea. Journal of Geophysical Research: Oceans, 127(2): e2021JC018117. doi: 10.1029/2021JC018117
    Zhang Zhengguang, Zhang Yu, Wang Wei. 2017. Three-compartment structure of subsurface-intensified mesoscale eddies in the ocean. Journal of Geophysical Research: Oceans, 122(3): 1653–1664. doi: 10.1002/2016JC012376
    Zheng Quanan, Lin Hui, Meng Junmin, et al. 2008. Sub-mesoscale ocean vortex trains in the Luzon Strait. Journal of Geophysical Research: Oceans, 113(C4): C04032. doi: 10.1029/2007JC004362
    Zheng Quanan, Xie Lingling, Xiong Xuejun, et al. 2020. Progress in research of submesoscale processes in the South China Sea. Acta Oceanologica Sinica, 39(1): 1–13. doi: 10.1007/s13131-019-1521-4
    Zhou Lei, Murtugudde R, Jochum M. 2008. Seasonal influence of Indonesian Throughflow in the southwestern Indian Ocean. Journal of Physical Oceanography, 38(7): 1529–1541. doi: 10.1175/2007JPO3851.1
    Zhurbas V, Stipa T, Mälkki P, et al. 2004. Generation of subsurface cyclonic eddies in the southeast Baltic Sea: Observations and numerical experiments. Journal of Geophysical Research: Oceans, 109(C5): C05033. doi: 10.1029/2003JC002074
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (704) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return