Citation: | Changyuan Chen, Chen Wang, Huimin Li, Denghui Hu, Gang Li, Xin Chen, Yijun He. Detection and characteristics analysis of the western subarctic front using the high-resolution SST product[J]. Acta Oceanologica Sinica, 2023, 42(6): 24-32. doi: 10.1007/s13131-022-2102-5 |
Belkin I M, Cornillon P C, Sherman K. 2009. Fronts in large marine ecosystems. Progress in Oceanography, 81(1–4): 223–236
|
Cayula J F, Cornillon P. 1992. Edge detection algorithm for SST images. Journal of Atmospheric and Oceanic Technology, 9(1): 67–80. doi: 10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
|
Cayula J F, Cornillon P. 1995. Multi-image edge detection for SST images. Journal of Atmospheric and Oceanic Technology, 12(4): 821–829. doi: 10.1175/1520-0426(1995)012<0821:MIEDFS>2.0.CO;2
|
Cayula J F, Cornillon P. 1996. Cloud detection from a sequence of SST images. Remote Sensing of Environment, 55(1): 80–88. doi: 10.1016/0034-4257(95)00199-9
|
Chen Shuiming. 2008. The Kuroshio Extension Front from satellite sea surface temperature measurements. Journal of Oceanography, 64(6): 891–897. doi: 10.1007/s10872-008-0073-6
|
Davis L S. 1975. A survey of edge detection techniques. Computer Graphics and Image Processing, 4(3): 248–270. doi: 10.1016/0146-664X(75)90012-X
|
Donlon C J, Martin M, Stark J, et al. 2012. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sensing of Environment, 116: 140–158. doi: 10.1016/j.rse.2010.10.017
|
Good S, Fiedler E, Mao C Y, et al. 2020. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sensing, 12(4): 720. doi: 10.3390/rs12040720
|
Gordon A L. 1975. An Antarctic oceanographic section along 170°E. Deep-Sea Research and Oceanographic Abstracts, 22(6): 357–377. doi: 10.1016/0011-7471(75)90060-1
|
Guan Lei, Kawamura H. 2004. Merging satellite infrared and microwave SSTs: methodology and evaluation of the new SST. Journal of Oceanography, 60(5): 905–912. doi: 10.1007/s10872-005-5782-5
|
Han Yansong, Zhang Lu, Qiao Lulu, et al. 2021. Multi-time scale variation of suspended sediment concentration over the eastern Shandong Peninsula under ocean front. Acta Sedimentologica Sinica (in Chinese), 41(3): 778–790
|
Kirches G, Paperin M, Klein H, et al. 2016. GRADHIST—A method for detection and analysis of oceanic fronts from remote sensing data. Remote Sensing of Environment, 181: 264–280. doi: 10.1016/j.rse.2016.04.009
|
Kobashi F, Mitsudera H, Xie Shangping. 2006. Three subtropical fronts in the North Pacific: observational evidence for mode water-induced subsurface frontogenesis. Journal of Geophysical Research: Oceans, 111(C9): C09033
|
Kuang Hailan, Perrie W, Chen Wei, et al. 2012. Thermal front retreivals from SAR imagery. In: Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 2637–2640
|
Masujima M, Yasuda I. 2009. Distribution and modification of North Pacific intermediate water around the subarctic frontal zone east of 150°E. Journal of Physical Oceanography, 39(6): 1462–1474. doi: 10.1175/2008JPO3919.1
|
Nagata Y, Michida Y, Umimura Y. 1988. Variation of positions and structures of the oceanic fronts in the Indian Ocean sector of the Southern Ocean in the period from 1965 to 1987. In: Sahrhage D, ed. Antarctic Ocean and Resources Variability. Berlin, Heidelberg: Springer, 92–98
|
Nakamura H, Kazmin A S. 2003. Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. Journal of Geophysical Research: Oceans, 108(C3): 3078. doi: 10.1029/1999JC000085
|
Nakano H, Tsujino H, Sakamoto K, et al. 2018. Identification of the fronts from the Kuroshio extension to the subarctic current using absolute dynamic topographies in satellite altimetry products. Journal of Oceanography, 74(4): 393–420. doi: 10.1007/s10872-018-0470-4
|
Ping Bo, Su Fenzhen, Meng Yunshan, et al. 2014. A model of sea surface temperature front detection based on a threshold interval. Acta Oceanologica Sinica, 33(7): 65–71. doi: 10.1007/s13131-014-0502-x
|
Rintoul S R, England M H. 2002. Ekman transport dominates local air-sea fluxes in driving variability of subantarctic mode water. Journal of Physical Oceanography, 32(5): 1308–1321. doi: 10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2
|
Sampe T, Nakamura H, Goto A, et al. 2010. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. Journal of Climate, 23(7): 1793–1814. doi: 10.1175/2009JCLI3163.1
|
Shao Lianjun, Zhang Honglei, Zhang Chunhua, et al. 2015. A method for detecting the oceanic front using remotely sensed sea-surface temperature. Hydrographic Surveying and Charting (in Chinese), 35(2): 42–44, 51
|
Shaw A G P, Vennell R. 2000. A front-following algorithm for AVHRR SST imagery. Remote Sensing of Environment, 72(3): 317–327. doi: 10.1016/S0034-4257(99)00108-X
|
Shimada T, Sakaida F, Kawamura H, et al. 2005. Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast. Remote Sensing of Environment, 98(1): 21–34. doi: 10.1016/j.rse.2005.05.018
|
Simhadri K K, Iyengar S S, Holyer R J, et al. 1998. Wavelet-based feature extraction from oceanographic images. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 767–778. doi: 10.1109/36.673670
|
Sugimoto S, Kobayashi N, Hanawa K. 2014. Quasi-decadal variation in intensity of the western part of the winter subarctic SST front in the western North Pacific: the influence of Kuroshio extension path state. Journal of Physical Oceanography, 44(10): 2753–2762. doi: 10.1175/JPO-D-13-0265.1
|
Tomita H, Kouketsu S, Oka E, et al. 2011. Locally enhanced wintertime air-sea interaction and deep oceanic mixed layer formation associated with the subarctic front in the North Pacific. Geophysical Research Letters, 38(24): L24607
|
Ullman D S, Cornillon P C. 2000. Evaluation of front detection methods for satellite-derived SST data using in situ observations. Journal of Atmospheric and Oceanic Technology, 17(12): 1667–1675. doi: 10.1175/1520-0426(2000)017<1667:EOFDMF>2.0.CO;2
|
Wang Yu, Yu Yi, Zhang Yang, et al. 2020. Distribution and variability of sea surface temperature fronts in the South China Sea. Estuarine, Coastal and Shelf Science, 240: 106793
|
Xu Suqin, Chen Biao, Tao Ronghua, et al. 2015. The temporal and spatial distribution characteristics of thermal front in the China seas. Journal of Telemetry, Tracking and Command (in Chinese), 36(3): 62–69, 74
|
Xu Bin, Yu Jingjing, Zhang Lei, et al. 2018. Research progress of global sea surface temperature fusion. Advances in Meteorological Science and Technology (in Chinese), 8(1): 164–170
|
Yang Yanlong, Liu Na, Fang Yue, et al. 2021. Spatial distribution and seasonal variation of ocean fronts in the sea of Japan. Advances in Marine Science (in Chinese), 39(3): 379–392
|
Yao Yao, Zhong Zhong, Yang Xiuqun. 2018. Impacts of the subarctic frontal zone on the North Pacific storm track in the cold season: an observational study. International Journal of Climatology, 38(5): 2554–2564. doi: 10.1002/joc.5429
|
Yu Peilong, Zhang Lifeng, Liu Mingyang, et al. 2020. A comparison of the strength and position variability of the Kuroshio Extension SST front. Acta Oceanologica Sinica, 39(5): 26–34. doi: 10.1007/s13131-020-1567-3
|
Yuan Xiaojun, Talley L D. 1996. The subarctic frontal zone in the North Pacific: characteristics of frontal structure from climatological data and synoptic surveys. Journal of Geophysical Research: Oceans, 101(C7): 16491–16508. doi: 10.1029/96JC01249
|
Zheng Huanhuan, Bai Yuxiu, Zhang Yaqiong. 2020. An edge detection algorithm based on Sobel operator. Microcomputer Applications (in Chinese), 36(10): 4–6
|
Zhu Kelan, Chen Xi, Mao Kefeng, et al. 2019. Mixing characteristics of the subarctic front in the Kuroshio-Oyashio confluence region. Oceanologia, 61(1): 103–113. doi: 10.1016/j.oceano.2018.07.004
|
Zhu Kelan, Chen Xi, Mao Kefeng, et al. 2020. Analysis on seasonal and interannual variations of the western Subarctic Front. Marine Science Bulletin (in Chinese), 39(1): 86–93
|