Volume 42 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Wanlin Zhai, Jianhua Zhu, Chuntao Chen, Wu Zhou, Longhao Yan, Yufei Zhang, Xiaoqi Huang, Kai Guo. Obtaining accurate measurements of the sea surface height from a GPS buoy[J]. Acta Oceanologica Sinica, 2023, 42(6): 78-88. doi: 10.1007/s13131-022-2109-y
Citation: Wanlin Zhai, Jianhua Zhu, Chuntao Chen, Wu Zhou, Longhao Yan, Yufei Zhang, Xiaoqi Huang, Kai Guo. Obtaining accurate measurements of the sea surface height from a GPS buoy[J]. Acta Oceanologica Sinica, 2023, 42(6): 78-88. doi: 10.1007/s13131-022-2109-y

Obtaining accurate measurements of the sea surface height from a GPS buoy

doi: 10.1007/s13131-022-2109-y
More Information
  • Corresponding author: chenchuntao@ytu.edu.cn
  • Received Date: 2022-04-26
  • Accepted Date: 2022-09-27
  • Available Online: 2023-07-13
  • Publish Date: 2023-06-25
  • A dedicated GPS buoy is designed for calibration and validation (Cal/Val) of satellite altimeters since 2014. In order to evaluate the accuracy of the sea surface height (SSH) measured by the GPS buoy, twelve campaigns have been done within China sea area between 2014 and 2021. In six of these campaigns, two static Global Navigation Satellite System stations were installed at distances of <1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions. The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH. The SSH was compared with conventionally tide gauge (TG) data to evaluate the accuracy of the buoy with the standard deviation of the height element. The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm. The SSHs processed with different ephemeris (Ultra-Rapid, Rapid, Final) were not significantly different. When the baseline length was 19 km, the SSH solution of the GPS buoy performed well, with standard bias of less than 26 mm between the heights measured by the buoy and TG, meaning that the buoy could be used for Cal/Val of altimeters. The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot, and some of them were over 130 mm. This deemed too high to be useful for Cal/Val of satellite altimeters. Moreover, the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns. The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.
  • loading
  • Ardalan A A, Jazireeyan I, Abdi N, et al. 2018. Evaluation of SARAL/AltiKa performance using GNSS/IMU equipped buoy in Sajafi, Imam Hassan and Kangan Ports. Advances in Space Research, 61(6): 1537–1545. doi: 10.1016/j.asr.2018.01.001
    Babu K N, Shukla A K, Suchandra A B, et al. 2015. Absolute calibration of SARAL/AltiKa in Kavaratti during its initial calibration-validation phase. Marine Geodesy, 38(S1): 156–170. doi: 10.1080/01490419.2015.1045639
    Bonnefond P, Exertier P, Laurain O, et al. 2013. GPS-based sea level measurements to help the characterization of land contamination in coastal areas. Advances in Space Research, 51(8): 1383–1399. doi: 10.1016/j.asr.2012.07.007
    Cancet M, Bijac S, Chimot J, et al. 2013. Regional in situ validation of satellite altimeters: calibration and cross-calibration results at the Corsican sites. Advances in Space Research, 51(8): 1400–1417. doi: 10.1016/j.asr.2012.06.017
    Chen Xiaoming, Allison T, Cao Wei, et al. 2011. Trimble RTX, an innovative new approach for network RTK. In: Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland, OR: Oregon Convention center: 2214–2219
    Chen Chuntao, Zhai Wanlin, Yan Longhao, et al. 2014. Assessment of the GPS buoy accuracy for altimeter sea surface height calibration. In: Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, Canada: IEEE, 3101–3104. doi: 10.1109/IGARSS.2014.6947133
    Chen Chuntao, Zhu Jianhua, Ma Chaofei, et al. 2021. Preliminary calibration results of the HY-2B altimeter’s SSH at China’s Wanshan calibration site. Acta Oceanologica Sinica, 40(5): 129–140. doi: 10.1007/s13131-021-1745-y
    Chen Chuntao, Zhu Jianhua, Zhai Wanlin, et al. 2019. Absolute calibration of HY-2A and Jason-2 altimeters for sea surface height using GPS buoy in Qinglan, China. Journal of Oceanology and Limnology, 37(5): 1533–1541. doi: 10.1007/s00343-019-8216-8
    Crétaux J F, Bergé-Nguyen M, Calmant S, et al. 2018. Absolute calibration or validation of the altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan). Remote Sensing, 10(11): 1679. doi: 10.3390/rs10111679
    Dawidowicz K, Krzan G. 2014. Coordinate estimation accuracy of static precise point positioning using on-line PPP service, a case study. Acta Geodaetica et Geophysica, 49(1): 37–55. doi: 10.1007/s40328-013-0038-0
    Dong Xiaojun, Woodworth P, Moore P, et al. 2002. Absolute calibration of the TOPEX/POSEIDON altimeters using UK tide gauges, GPS, and precise, local geoid-differences. Marine Geodesy, 25(3): 189–204. doi: 10.1080/01490410290051527
    Estey L H, Meertens C M. 1999. TEQC: The multi-purpose toolkit for GPS/GLONASS data. GPS Solutions, 3(1): 42–49. doi: 10.1007/pl00012778
    Fu L L, Christensen E J, Yamarone C A Jr, et al. 1994. TOPEX/POSEIDON mission overview. Journal of Geophysical Research, 99(C12): 24369–24381. doi: 10.1029/94JC01761
    Geng Jianghui, Chen Xingyu, Pan Yuanxin, et al. 2019. PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS solutions, 23(4): 91
    Herring T A. 2012. TRACK GPS Kinematic Positioning Program, Version 1.07. Cambridge, MA: Massachusetts Institute of Technology
    Herring T A, King R W, Folyd M A, et al. 2018. Introduction to GAMIT/GLOBK Release 10.7. Massachusetts Institute of Technology. http://www-gpsg.mit.edu/gg/docs/Intro_GG.pdf[2018-06-07/2018-06-20]
    Jia Zhige, Chen Zhengsong, Wang Dijin, et al. 2014. The quality test of TOPCON NET-G3A GNSS receiver. Applied Mechanics and Materials, 511–512: 290–293, doi: 10.4028/www.scientific.net/AMM.511-512.290
    Jiang Xingwei, Jia Yongjun, Zhang Youguang. 2019. Measurement analyses and evaluations of sea-level heights using the HY-2A satellite’s radar altimeter. Acta Oceanologica Sinica, 38(11): 134–139. doi: 10.1007/s13131-019-1503-6
    Jin Honglin, Gao Yuan, Su Xiaoning, et al. 2019. Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data. Earth and Planetary Physics, 3(1): 53–61. doi: 10.26464/epp2019006
    Kato T, Terada Y, Nagai T, et al. 2010. Tsunami monitoring system using GPS buoy—Present status and outlook. In: 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 3043–3046. doi: 10.1109/IGARSS.2010.5654449
    Li Fei, Zhang Qingchuan, Zhang Shengkai, et al. 2020. Evaluation of spatio-temporal characteristics of different zenith tropospheric delay models in Antarctica. Radio Science, 55(5): e2019RS006909. doi: 10.1029/2019RS006909
    Lin Yen-Pin, Huang Ching-Jer, Chen Sheng-Hsueh, et al. 2017. Development of a GNSS buoy for monitoring water surface elevations in estuaries and coastal areas. Sensors, 17(1): 172. doi: 10.3390/s17010172
    Liu Yalong, Tang Junwu, Zhu Jianhua, et al. 2014. An improved method of absolute calibration to satellite altimeter: A case study in the Yellow Sea, China. Acta Oceanologica Sinica, 33(5): 103–112. doi: 10.1007/s13131-014-0476-8
    Martinez-Benjamin J J, Martinez-Garcia M, Lopez S G, et al. 2004. Ibiza absolute calibration experiment: survey and preliminary results. Marine Geodesy, 27(3–4): 657–681, doi: 10.1080/01490410490883342
    Ménard Y, Jeansou E, Vincent P. 1994. Calibration of the TOPEX/POSEIDON altimeters at Lampedusa: additional results at harvest. Journal of Geophysical Research: Oceans, 99(C12): 24487–24504. doi: 10.1029/94JC01300
    Ocean Surface Topography Mission. 2017. Jason-3 Products Handbook. Issue: 1, Rev: 4. https://www.ospo.noaa.gov/Products/documents/hdbk_j3.pdf [2018-10-20/2019-08-17]
    Salleh A M, Daud M E. 2015. Development of a GPS buoy for ocean surface monitoring: initial results. World Academy of Science, Engineering and Technology, 9(6): 769–772,
    Stewart R H. 2008. Introduction to Physical Oceanography. Texas: Texas A&M University
    Tang Yuxiang, Sun Hongliang, Hu Xiaomin, et al. 2008. GB/T 12763.2-2007. Specifications for oceanographic survey-Part 2: Marine hydrographic observation (in Chinese). Beijing: Standards Press of China
    Wang Nazi, Xu Tianhe, Gao Fan, et al. 2018. Sea level estimation based on GNSS dual-frequency carrier phase linear combinations and SNR. Remote Sensing, 10: 470,
    Watson C S. 2005. Satellite altimeter calibration and validation using GPS buoy technology [dissertation]. Hobart: University of Tasmania
    Watson C, Coleman R, Handsworth R. 2008. Coastal tide gauge calibration: A case study at Macquarie Island using GPS buoy techniques. Journal of Coastal Research, 2008(244): 1071–1079. doi: 10.2112/07-0844.1
    Xu Xiyu, Xu Ke, Shen Hua, et al. 2016. Sea surface height and significant wave height calibration methodology by a GNSS buoy campaign for HY-2A altimeter. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11): 5252–5261. doi: 10.1109/JSTARS.2016.2584626
    Zhai Wanlin, Zhu Jianhua, Chen Chuntao, et al. 2019. Calibration of HY-2A satellite altimeter based on GPS bouy. In: Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Tokyo: IEEE, 8300–8303. doi: 10.1109/IGARSS.2019.8900272
    Zhai Wanlin, Zhu Jianhua, Fan Xiaohui, et al. 2021. Preliminary calibration results for Jason-3 and Sentinel-3 altimeters in the Wanshan Islands. Journal of Oceanology and Limnology, 39(2): 458–471. doi: 10.1007/s00343-020-9251-1
    Zhai Wanlin, Zhu Jianhua, Lin Mingsen, et al. 2022. GNSS data processing and validation of the altimeter zenith wet delay around the Wanshan Calibration Site. Remote Sensing, 14, 6235,
    Zhou Boye, Watson C, Legresy B, et al. 2020. GNSS/INS-equipped buoys for altimetry validation: Lessons learnt and new directions from the Bass Strait validation facility. Remote Sensing, 12(18): 3001. doi: 10.3390/rs12183001
    Zumberge J F, Heflin M B, Jefferson D C, et al. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3): 5005–5017. doi: 10.1029/96JB03860
    Zuo Xianqing, Bu Jinwei, Li Xiangxin, et al. 2019. The quality analysis of GNSS satellite positioning data. Cluster Computing, 22(3): 6693–6708. doi: 10.1007/s10586-018-2524-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (198) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return