Citation: | Shanshan Zhou, Youchuan Li, Jianping Li, Wenjing Ding, Xin Li, Weilai Zhang. Supply of terrigenous organic matter from tidal flat to the marine environment: An example of neritic source rocks in the Eocene Pinghu Formation, Xihu Depression, East China Sea Shelf Basin[J]. Acta Oceanologica Sinica, 2023, 42(3): 138-150. doi: 10.1007/s13131-022-2141-y |
Abbassi S, George S C, Edwards D S, et al. 2014. Generation characteristics of Mesozoic syn- and post-rift source rocks, Bonaparte Basin, Australia: New insights from compositional kinetic modelling. Marine and Petroleum Geology, 50: 148–165. doi: 10.1016/j.marpetgeo.2013.10.010
|
Baudin F, Stetten E, Schnyder J, et al. 2017. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan—A Rock-Eval survey. Deep-Sea Research, Part II: Topical Studies in Oceanography, 2017, 142: 75–90
|
Bojesen-Koefoed J A, Christiansen F G, Petersen H I, et al. 1996. Resinite-rich coals of northeast Greenland—A hitherto unrecognized, highly oil-prone Jurassic source rock. Bulletin of Canadian Petroleum Geology, 44(3): 458–473
|
Cai Hua, Qin Lanzhi, Liu Yinghui. 2019. Differentiation and coupling model of source-to-sink systems with transitional facies in Pingbei Slope of Xihu Sag. Earth Science (in Chinese), 44(3): 880–897
|
Cai Jingong, Zhu Xiaojun, Zhang Jingqiao, et al. 2020. Heterogeneities of organic matter and its occurrence forms in mudrocks: Evidence from comparisons of palynofacies. Marine and Petroleum Geology, 111: 21–32. doi: 10.1016/j.marpetgeo.2019.08.004
|
Carvalho M D A, Filho J G M, Menezes T R. 2006. Paleoenvironmental reconstruction based on palynofacies analysis of the Aptian-Albian succession of the Sergipe Basin, Northeastern Brazil. Marine Micropaleontology, 59(1): 56–81. doi: 10.1016/j.marmicro.2006.01.001
|
Chen Linlin. 1998. Depositional environment evolution of Pinghu Formation in Xihu Depression, the East China Sea. Marine Geology & Quaternary Geology (in Chinese), 18(4): 69–78
|
Cheng Xiong, Hou Dujie, Zhao Zhe, et al. 2020. Higher landplant-derived biomarkers in light oils and condensates from the coal-bearing Eocene Pinghu Formation, Xihu Sag, East China Sea Shelf Basin. Journal of Petroleum Geology, 43(4): 437–451. doi: 10.1111/jpg.12774
|
Dai Na, Zhong Ningning, Deng Yunhua, et al. 2015. Genetic types of marine source rock in Meso-Cenozoic continental margin basins. Acta Petrolei Sinica (in Chinese), 36(8): 940–953
|
Damsté J S S, Kenig F, Koopmans M P, et al. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59(9): 1895–1900. doi: 10.1016/0016-7037(95)00073-9
|
Deng Yunhua, Lan Lei, Li Youchuan, et al. 2019. On the control effect of deltas on the distribution of marine oil and gas fields in the South China Sea. Acta Petrolei Sinica (in Chinese), 40(S2): 1–12
|
Deniau I, Disnar J R, Baudin F, et al. 2010. Characterization of organic matter in the Oligocene (Chattian) turbiditic fine grained deposits, offshore Angola. Organic Geochemistry, 41(2): 135–145. doi: 10.1016/j.orggeochem.2009.11.004
|
Diao Hui, Liu Jinshui, Hou Dujie, et al. 2019. Coal-bearing source rocks formed in the transitional stage from faulting to depression nearshore China—A case from the Pinghu Formation in the Xihu Sag. Marine Geology & Quaternary Geology (in Chinese), 39(6): 102–114
|
Didyk B M, Simoneit B R T, Brassell S C, et al. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272(5650): 216–222. doi: 10.1038/272216a0
|
Ding Wenjing, Hou Dujie, Gan Jun, et al. 2021. Palaeovegetation variation in response to the late Oligocene-early Miocene East Asian summer monsoon in the Ying-Qiong Basin, South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110205
|
Doust H, Noble R A. 2008. Petroleum systems of Indonesia. Marine and Petroleum Geology, 25(2): 103–129. doi: 10.1016/j.marpetgeo.2007.05.007
|
Fu Ning, Li Youchuan, Chen Guihua, et al. 2003. Pooling mechanisms of “evaporating fractionation” of oil and gas in the Xihu depression, East China Sea. Petroleum Exploration and Development (in Chinese), 30(2): 39–42
|
Garcia Y C, Martinez J I, Velez M I, et al. 2011. Palynofacies analysis of the late Holocene San Nicolás terrace of the Cauca paleolake and paleohydrology of northern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(1/2): 298–308
|
Haven H L T, Rohmer M, Rullkötter J, et al. 1989. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochimica et Cosmochimica Acta, 53(11): 3073–3079. doi: 10.1016/0016-7037(89)90186-5
|
He Yuping. 2020. Discovery and geological significance of Eocene Pinghu Formation Tempestites in Tiantai area, Xihu Sag, East China Sea Basin. Journal of Jilin University (Earth Science Edition) (in Chinese), 50(2): 500–508
|
Jiang Haijun, Hu Mingyi, Hu Zhonggui, et al. 2011. Sedimentary environment of Paleogene in Xihu Sag: Microfossil as the main foundation. Lithologic Reservoirs (in Chinese), 23(1): 74–78
|
Jones E B G. 1988. Do fungi occur in the sea?. Mycologist, 2(4): 150–157
|
Kotsiantis S B. 2007. Supervised Machine Learning: A Review of Classification Techniques. Informatica, 31: 249–268
|
Li Zengxue, Lv Dawei, Wang Dongdong, et al. 2015. The multiple coal-forming theoretical system and its model. Haiyang Xuebao (in Chinese), 36(3): 271–282
|
Noble R A, Alexander R, Kagi R I, et al. 1985. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochimica et Cosmochimica Acta, 49(10): 2141–2147. doi: 10.1016/0016-7037(85)90072-9
|
Otto A, Simoneit B R T, Rember W C. 2005. Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA. Organic Geochemistry, 36(6): 907–922. doi: 10.1016/j.orggeochem.2004.12.004
|
Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Exploration and Earth History. 2nd ed. Cambridge: Cambridge University Press
|
Saller A, Lin R, Dunham J. 2006. Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia. AAPG Bulletin 90(10): 1585–1608
|
Su Ao, Chen Honghan, Hu Fei, et al. 2015. Conditions, characteristics and enrichment regulation of oil and gas accumulation of the south central of central anticlinal zone in the Xihu Sag, East China Sea Basin. Geological Science and Technology Information (in Chinese), 34(2): 123–129
|
Tyson R V. 1995. Sedimentary Organic Matter. London: Chapman & Hall
|
Volkman J K. 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9(2): 83–99. doi: 10.1016/0146-6380(86)90089-6
|
Wang Xuemin. 2017. Applied Multivariate Statistical Analysis (in Chinese). 5th ed. Shanghai: Shanghai University of Finance and Economics Press, 114–145
|
Wang Qian, Li Sanzhong, Guo Lingli, et al. 2017. Analogue modelling and mechanism of tectonic inversion of the Xihu Sag, East China Sea Shelf Basin. Journal of Asian Earth Sciences, 139: 129–141. doi: 10.1016/j.jseaes.2017.01.026
|
Wang Yang, Qin Yong, Yang Liu, et al. 2020. Organic geochemical and petrographic characteristics of the coal measure source rocks of Pinghu Formation in the Xihu Sag of the East China Sea Shelf Basin: Implications for coal measure gas potential. Acta Geologica Sinica (English Edition), 94(2): 150–161
|
Xie Guoliang, Shen Yulin, Zhao Zhigang, et al. 2013. Distribution characteristic and geological significance of rare earth and trace elements of mudstone of Pingbei area in Xihu Depression. Geochimica (in Chinese), 42(6): 599–610
|
Yu Shui. 2020. Depositional genesis analysis of source rock in Pinghu Formation of western slope, Xihu Depression. Earth Science (in Chinese), 45(5): 1722–1736
|
Zhang Liuping. 1991. A study of the method for oil source correlation with trace elements in petroleum. Petroleum Exploration and Development (in Chinese), (S1): 96–106
|
Zhang Liuping, Bai Guoping, Zhao Yingquan. 2014. Data-processing and recognition of seepage and microseepage anomalies of acid-extractable hydrocarbons in the south slope of the Dongying Depression, eastern China. Marine and Petroleum Geology, 57: 385–402. doi: 10.1016/j.marpetgeo.2014.06.009
|
Zhang Liuping, Bai Guoping, Zhao Xianzheng, et al. 2019. Oil-source correlation in the slope of the Qikou Depression in the Bohai Bay Basin with discriminant analysis. Marine and Petroleum Geology, 109: 641–657. doi: 10.1016/j.marpetgeo.2019.06.055
|
Zhang Gongcheng, Deng Yunhua, Wu Jingfu, et al. 2013. Coal measure source-rock characteristics and gas exploration directions in Cenozoic superimposed faulted depressions, offshore China. China Offshore Oil and Gas (in Chinese), 25(6): 15–25
|
Zhang Gongcheng, Li Zengxue, Lan Lei, et al. 2021. Natural gas in large gas fields in the South China Sea is mainly coal-type gas. Natural Gas Industry (in Chinese), 41(11): 12–23
|
Zhang Gongcheng, Li Zengxue, Wang Dongdong, et al. 2020. Characteristics of coal geology in South China Sea. Journal of China Coal Society (in Chinese), 45(11): 3864–3878
|
Zhang Liuping, Liao Zebin. 1998. A primary study of the method for anomaly recognition in geochemical hydrocarbon exploration. Journal of China University of Geosciences, 9(1): 72–80
|
Zhang Gongcheng, Qu Hongjun, Liu Shixiang, et al. 2015. Tectonic cycle of marginal sea controlled the hydrocarbon accumulation in deep-water areas of South China Sea. Acta Petrolei Sinica, 36(5): 533–545
|
Zhou Shanshan, Bai Guoping, Zhang Liuping, et al. 2021. Identifying oil sources in the Wen’an Slope of the Baxian Depression, the Bohai Bay Basin, North China. Marine and Petroleum Geology, 128: 104938. doi: 10.1016/j.marpetgeo.2021.104938
|
Zhu Xinjina, Chen Jianfa, Li Wei, et al. 2020. Hydrocarbon generation potential of Paleogene coals and organic rich mudstones in Xihu sag, East China Sea Shelf basin, offshore eastern China. Journal of Petroleum Science and Engineering, 184: 106450. doi: 10.1016/j.petrol.2019.106450
|
Zhu Yangming, Li Ying, Zhou Jie, et al. 2012. Geochemical characteristics of Tertiary coal-bearing source rocks in Xihu Depression, East China Sea Basin. Marine and Petroleum Geology, 35(1): 154–165. doi: 10.1016/j.marpetgeo.2012.01.005
|