Citation:  Yan Hu, Wei Li, Xuefeng Zhang, Guimei Liu, Liang Zhang. Application of the finite analytic numerical method to a flowdependent variational data assimilation[J]. Acta Oceanologica Sinica, 2024, 43(3): 3039. doi: 10.1007/s131310232229z 
Blumberg A F, Mellor G L. 1987. A description of a threedimensional coastal ocean circulation model. In: Heaps N S, ed. ThreeDimensional Coastal Ocean Models, Volume 4. Washington, DC: American Geophysical Union, 1–16

Chen C J, Sheikholeslami M Z, Bhiladvala R B. 1989. Finite analytic numerical method for twopoint boundary value problems of ordinary differential equations. Computer Methods in Applied Mechanics & Engineering, 75(1–3): 61–76

Courant R, Isaacson E, Rees M. 1952. On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure & Applied Mathematics, 5(3): 243–255, doi: 10.1002/cpa.3160050303

Courtier P. 1997. Variational methods. Journal of the Meteorological Society of Japan, 75(1B): 211–218

Derber J, Rosati A. 1989. A global oceanic data assimilation system. Journal of Physical Oceanography, 19(9): 1333–1347, doi: 10.1175/15200485(1989)019<1333:AGODAS>2.0.CO;2

Douglas J Jr, Russell T F. 1982. Numerical methods for convectiondominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. Siam Journal on Numerical Analysis, 19(5): 871–885, doi: 10.1137/0719063

Du Zhengping, Liu Xiaoyu, Lu Jinfu. 2000. Quadratic monotone interpolation characteristic difference method for convectiondiffusion equation. Journal of Tsinghua University (Science and Technology) (in Chinese), 40(11): 1–4

Eymard R, Gallouët T, Herbin R. 2000. Finite volume methods. In: Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis. Amsterdam: Elsevier, 7: 713–1018

Ezer T, Mellor G L. 2004. A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrainfollowing and in zlevel grids. Ocean Modelling, 6(3/4): 379–403, doi: 10.1016/S14635003(03)00026X

Feng Minquan, Zheng Bangmin. 2006. Auto upwind and skew upwind numerical solution method of 2D convectiondiffusion equation under high reynolds number. Journal of Sichuan University (Engineering Science Edition) (in Chinese), 38(6): 18–23

Giering R, Kaminski T. 1998. Recipes for adjoint code construction. ACM Transactions on Mathematical Software, 24(4): 437–474, doi: 10.1145/293686.293695

Han Guijun, Fu Hongli, Zhang Xuefeng, et al. 2013. A global ocean reanalysis product in the China Ocean Reanalysis (CORA) project. Advances in Atmospheric Sciences, 30(6): 1621–1631, doi: 10.1007/s0037601321989

Hascoёt L, Pascual V. 2004. TAPENADE 2.1 User’s Guide. France: National Institute for Research in Computer Science and Control

He Zhongjie, Xie Yuanfu, Li Wei, et al. 2008. Application of the sequential threedimensional variational method to assimilating SST in a global ocean model. Journal of Atmospheric & Oceanic Technology, 25(6): 1018–1033, doi: 10.1175/2007JTECHO540.1

Hu Yan, Zhang Xuefeng, Li Dong, et al. 2023. Anisotropic diffusion filters for flowdependent variational data assimilation of sea surface temperature. Ocean Modelling, 184: 102233, doi: 10.1016/j.ocemod.2023.102233

Li Dong, Wang Xidong, Zhang Xuefeng, et al. 2011. Multiscale 3DVAR based on diffusion filter. Marine Science Bulletin (in Chinese), 30(2): 164–171

Liu D C, Nocedal J. 1989. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(1): 503–528, doi: 10.1007/BF01589116

Mellor G L. 2002. Users Guide for A ThreeDimensional, Primitive Equation, Numerical Ocean Model. Princeton: Princeton University

Mellor G L, Häkkinen S M, Ezer T, et al. 2002. A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinardi N, Woods J, eds. Ocean Forecasting: Conceptual Basis and Applications. Heidelberg: Springer, 55–72, doi: 10.1007/9783662226483_4

Nassehi V, King S A. 1991. Finite element methods for the convection diffusion equation. International Journal of Engineering, 4(3): 93–100

Rigal A. 1989. Numerical analysis of twolevel finite difference schemes for unsteady diffusion–convection problems. International Journal for Numerical Methods in Engineering, 28(5): 1001–1021, doi: 10.1002/nme.1620280503

Tao Wenquan. 2001. Numerical Heat Transfer (in Chinese). 2nd ed. Xi’an: Xi’an Jiaotong University Press, 135–176

Wang Yanfeng, Liu Zhifeng, Wang Xiaohong. 2014. Finite analytic numerical method for threedimensional fluid flow in heterogeneous porous media. Journal of Computational Physics, 278: 169–181, doi: 10.1016/j.jcp.2014.08.026

Weaver A, Courtier P. 2001. Correlation modelling on the sphere using a generalized diffusion equation. Quarterly Journal of the Royal Meteorological Society, 127(575): 1815–1846, doi: 10.1002/qj.49712757518

Weaver A T, Chrust M, Ménétrier B, et al. 2021. An evaluation of methods for normalizing diffusionbased covariance operators in variational data assimilation. Quarterly Journal of the Royal Meteorological Society, 147(734): 289–320, doi: 10.1002/qj.3918

Weaver A T, Mirouze I. 2013. On the diffusion equation and its application to isotropic and anisotropic correlation modelling in variational assimilation. Quarterly Journal of the Royal Meteorological Society, 139(670): 242–260, doi: 10.1002/qj.1955

Weaver A T, Tshimanga J, Piacentini A. 2016. Correlation operators based on an implicitly formulated diffusion equation solved with the Chebyshev iteration. Quarterly Journal of the Royal Meteorological Society, 142(694): 455–471, doi: 10.1002/qj.2664

Xie Yuanfu, Koch S, Mcginley J, et al. 2011. A spacetime multiscale analysis system: A sequential variational analysis approach. Monthly Weather Review, 139(4): 1224–1240, doi: 10.1175/2010MWR3338.1

Yan Chao. 2006. Computational Fluid Mechanics Methods and Applications (in Chinese). Beijing: Beijing University of Aeronautics and Astronautics Press, 1–266

Zhang Xuefeng, Li Dong, Chu P C, et al. 2015. Diffusion filters for variational data assimilation of sea surface temperature in an intermediate climate model. Advances in Meteorology, 2015: 751404, doi: 10.1155/2015/751404
