Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Yizhuo Chen, Xiaoping Pang, Qing Ji, Zhongnan Yan, Zeyu Liang, Chenlei Zhang. Retrieval of Antarctic sea ice freeboard and thickness from HY-2B satellite altimeter data[J]. Acta Oceanologica Sinica, 2024, 43(3): 87-101. doi: 10.1007/s13131-023-2250-2
Citation: Yizhuo Chen, Xiaoping Pang, Qing Ji, Zhongnan Yan, Zeyu Liang, Chenlei Zhang. Retrieval of Antarctic sea ice freeboard and thickness from HY-2B satellite altimeter data[J]. Acta Oceanologica Sinica, 2024, 43(3): 87-101. doi: 10.1007/s13131-023-2250-2

Retrieval of Antarctic sea ice freeboard and thickness from HY-2B satellite altimeter data

doi: 10.1007/s13131-023-2250-2
Funds:  The National Natural Science Foundation of China under contract No. 42076235.
More Information
  • Corresponding author: E-mail: pxp@whu.edu.cnjiqing@whu.edu.cn
  • Received Date: 2023-04-10
  • Accepted Date: 2023-09-08
  • Available Online: 2024-03-18
  • Publish Date: 2024-03-25
  • Antarctic sea ice is an important part of the Earth’s atmospheric system, and satellite remote sensing is an important technology for observing Antarctic sea ice. Whether Chinese Haiyang-2B (HY-2B) satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series, as other radar altimetry satellites can, needs further investigation. This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data. We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature (IST) product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images. Second, a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights. We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation. Finally, the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate (ASPeCt) ship-based observed sea ice thickness. The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable, and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m. The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products; this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.
  • loading
  • Armitage T W K, Davidson M W J. 2014. Using the interferometric capabilities of the ESA CryoSat-2 mission to improve the accuracy of sea ice freeboard retrievals. IEEE Transactions on Geoscience and Remote Sensing, 52(1): 529–536, doi: 10.1109/TGRS.2013.2242082
    Armitage T W K, Ridout A L. 2015. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and operation IceBridge. Geophysical Research Letters, 42(16): 6724–6731, doi: 10.1002/2015GL064823
    Chen Chuntao, Zhu Jianhua, Ma Chaofei, et al. 2021. Preliminary calibration results of the HY-2B altimeter’s SSH at China’s Wanshan calibration site. Acta Oceanologica Sinica, 40(5): 129–140, doi: 10.1007/s13131-021-1745-y
    Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35(1): L01703
    Crosta X, Kohfeld K E, Bostock H C, et al. 2022. Antarctic sea ice over the past 130 000 years—Part 1: a review of what proxy records tell us. Climate of the Past, 18(8): 1729–1756, doi: 10.5194/cp-18-1729-2022
    Drüe C, Heinemann G. 2004. High-resolution maps of the sea-ice concentration from MODIS satellite data. Geophysical Research Letters, 31(20): L20403
    Farrell S L, Markus T, Kwok R, et al. 2011. Laser altimetry sampling strategies over sea ice. Annals of Glaciology, 52(57): 69–76, doi: 10.3189/172756411795931660
    Fons S W, Kurtz N T, Bagnardi M, et al. 2021. Assessing CryoSat-2 Antarctic snow freeboard retrievals using data from ICESat-2. Earth and Space Science, 8(7): e2021EA001728, doi: 10.1029/2021EA001728
    Haas C, Lobach J, Hendricks S, et al. 2009. Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system. Journal of Applied Geophysics, 67(3): 234–241, doi: 10.1016/j.jappgeo.2008.05.005
    Helm V, Humbert A, Miller H. 2014. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4): 1539–1559, doi: 10.5194/tc-8-1539-2014
    Holland M M, Bitz C M, Hunke E C, et al. 2006. Influence of the sea ice thickness distribution on polar climate in CCSM3. Journal of Climate, 19(11): 2398–2414, doi: 10.1175/JCLI3751.1
    Jia Yongjun, Yang Jungang, Lin Mingsen, et al. 2020. Global assessments of the HY-2B measurements and cross-calibrations with Jason-3. Remote Sensing, 12(15): 2470, doi: 10.3390/rs12152470
    Jiang Chengfei, Lin Mingsen, Wei Hao. 2019. A study of the technology used to distinguish sea ice and seawater on the Haiyang-2A/B (HY-2A/B) altimeter data. Remote Sensing, 11(12): 1490, doi: 10.3390/rs11121490
    Kern S, Khvorostovsky K, Skourup H, et al. 2015. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise. The Cryosphere, 9(1): 37–52, doi: 10.5194/tc-9-37-2015
    Kurtz N T, Galin N, Studinger M. 2014. An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting. The Cryosphere, 8(4): 1217–1237, doi: 10.5194/tc-8-1217-2014
    Kurtz N T, Markus T. 2012. Satellite observations of Antarctic sea ice thickness and volume. Journal of Geophysical Research: Oceans, 117(C8): C08025
    Kurtz N T, Markus T, Cavalieri D J, et al. 2009. Estimation of sea ice thickness distributions through the combination of snow depth and satellite laser altimetry data. Journal of Geophysical Research: Oceans, 114(C10): C10007
    Kwok R. 2010. Satellite remote sensing of sea-ice thickness and kinematics: a review. Journal of Glaciology, 56(200): 1129–1140, doi: 10.3189/002214311796406167
    Kwok R, Cunningham G F, Manizade S S, et al. 2012. Arctic sea ice freeboard from IceBridge acquisitions in 2009: Estimates and comparisons with ICESat. Journal of Geophysical Research: Oceans, 117(C2): C02018
    Kwok R, Kacimi S. 2018. Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2. The Cryosphere, 12(8): 2789–2801, doi: 10.5194/tc-12-2789-2018
    Kwok R, Kacimi S, Markus T, et al. 2019. ICESat-2 surface height and sea ice freeboard assessed with ATM Lidar acquisitions from operation IceBridge. Geophysical Research Letters, 46(20): 11228–11236, doi: 10.1029/2019GL084976
    Kwok R, Kacimi S, Webster M A, et al. 2020. Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination. Journal of Geophysical Research: Oceans, 125(3): e2019JC016008, doi: 10.1029/2019JC016008
    Landy J C, Petty A A, Tsamados M, et al. 2020. Sea ice roughness overlooked as a key source of uncertainty in CryoSat-2 ice freeboard retrievals. Journal of Geophysical Research: Oceans, 125(5): e2019JC015820, doi: 10.1029/2019JC015820
    Landy J C, Tsamados M, Scharien R K. 2019. A facet-based numerical model for simulating SAR altimeter echoes from heterogeneous sea ice surfaces. IEEE Transactions on Geoscience and Remote Sensing, 57(7): 4164–4180, doi: 10.1109/TGRS.2018.2889763
    Laxon S W, Giles K A, Ridout A L, et al. 2013. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters, 40(4): 732–737, doi: 10.1002/grl.50193
    Laxon S, Peacock N, Smith D. 2003. High interannual variability of sea ice thickness in the Arctic region. Nature, 425(6961): 947–950, doi: 10.1038/nature02050
    Lee S, Im J, Kim J, et al. 2016. Arctic sea ice thickness estimation from CryoSat-2 satellite data using machine learning-based lead detection. Remote Sensing, 8(9): 698, doi: 10.3390/rs8090698
    Lee Y K, Kongoli C, Key J. 2015. An in-depth evaluation of heritage algorithms for snow cover and snow depth using AMSR-E and AMSR2 measurements. Journal of Atmospheric and Oceanic Technology, 32(12): 2319–2336, doi: 10.1175/JTECH-D-15-0100.1
    Lewis R J. 2000. An introduction to classification and regression tree (CART) analysis. In: Presented at the 2000 Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California (Vol. 14). Torrance: Department of Emergency Medicine Harbor-UCLA Medical Center
    Li Wanwu, Liu Lin, Zhang Jixian. 2021. Fusion of SAR and optical image for sea ice extraction. Journal of Ocean University of China, 20(6): 1440–1450, doi: 10.1007/s11802-021-4824-y
    Li Huan, Xie Hongjie, Kern S, et al. 2018. Spatio-temporal variability of Antarctic sea-ice thickness and volume obtained from ICESat data using an innovative algorithm. Remote Sensing of Environment, 219: 44–61, doi: 10.1016/j.rse.2018.09.031
    Maksym T, Markus T. 2008. Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. Journal of Geophysical Research: Oceans, 113(C2): C02S12
    Markus T, Cavalieri, D J. 1998. Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data. Antarctic sea ice: physical processes, interactions and variability, 74, 19-39
    Markus T, Neumann T, Martino A, et al. 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 190: 260–273, doi: 10.1016/j.rse.2016.12.029
    Ozsoy-Cicek B, Ackley S, Xie Hongjie, et al. 2013. Sea ice thickness retrieval algorithms based on in situ surface elevation and thickness values for application to altimetry. Journal of Geophysical Research: Oceans, 118(8): 3807–3822, doi: 10.1002/jgrc.20252
    Passaro M, Müller F L, Dettmering D. 2018. Lead detection using Cryosat-2 delay-doppler processing and Sentinel-1 SAR images. Advances in Space Research, 62(6): 1610–1625, doi: 10.1016/j.asr.2017.07.011
    Reiser F, Willmes S, Heinemann G. 2020. A new algorithm for daily sea ice lead identification in the Arctic and Antarctic winter from thermal-infrared satellite imagery. Remote Sensing, 12(12): 1957, doi: 10.3390/rs12121957
    Ricker R, Hendricks S, Helm V, et al. 2014. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. The Cryosphere, 8(4): 1607–1622, doi: 10.5194/tc-8-1607-2014
    Shi Lijian, Karvonen J, Cheng Bin, et al. 2014. Sea ice thickness retrieval from SAR imagery over Bohai Sea. In: 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 4864–4867
    Spreen G, Kern S, Stammer D, et al. 2006. Satellite-based estimates of sea-ice volume flux through Fram Strait. Annals of Glaciology, 44: 321–328, doi: 10.3189/172756406781811385
    Tian Liuxi, Xie Hongjie, Ackley S F, et al. 2020. Sea-ice freeboard and thickness in the Ross Sea from airborne (IceBridge 2013) and satellite (ICESat 2003–2008) observations. Annals of Glaciology, 61(82): 24–39, doi: 10.1017/aog.2019.49
    Turner J, Comiso J C, Marshall G J, et al. 2009. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophysical Research Letters, 36(8): L08502
    Wang Jinfei, Min Chao, Ricker R, et al. 2022. A comparison between Envisat and ICESat sea ice thickness in the Southern Ocean. The Cryosphere, 16(10): 4473–4490, doi: 10.5194/tc-16-4473-2022
    Wang Xianwei, Xie Hongjie, Ke Yanan, et al. 2013. A method to automatically determine sea level for referencing snow freeboards and computing sea ice thicknesses from NASA IceBridge airborne LIDAR. Remote Sensing of Environment, 131: 160–172, doi: 10.1016/j.rse.2012.12.022
    Weissling B P, Lewis M J, Ackley S F. 2011. Sea-ice thickness and mass at Ice Station Belgica, Bellingshausen Sea, Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(9/10): 1112–1124, doi: 10.1016/j.dsr2.2010.10.032
    Williams G, Maksym T, Wilkinson J, et al. 2015. Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles. Nature Geoscience, 8(1): 61–67, doi: 10.1038/ngeo2299
    Willmes S, Heinemann G. 2015. Pan-Arctic lead detection from MODIS thermal infrared imagery. Annals of Glaciology, 56(69): 29–37, doi: 10.3189/2015AoG69A615
    Worby A P, Geiger C A, Paget M J, et al. 2008. Thickness distribution of Antarctic sea ice. Journal of Geophysical Research: Oceans, 113(C5): C05S92
    Worby A P, Steer A, Lieser J L, et al. 2011. Regional-scale sea-ice and snow thickness distributions from in situ and satellite measurements over East Antarctica during SIPEX 2007. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(9/10): 1125–1136, doi: 10.1016/j.dsr2.2010.12.001
    Xie Hongjie, Ackley S F, Yi Donghui, et al. 2011. Sea-ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(9/10): 1039–1051, doi: 10.1016/j.dsr2.2010.10.038
    Xie Hongjie, Tekeli A E, Ackley S F, et al. 2013. Sea ice thickness estimations from ICESat altimetry over the Bellingshausen and Amundsen Seas, 2003–2009. Journal of Geophysical Research: Oceans, 118(5): 2438–2453, doi: 10.1002/jgrc.20179
    Yi Donghui, Zwally H J, Robbins J W. 2011. ICESat observations of seasonal and interannual variations of sea-ice freeboard and estimated thickness in the Weddell Sea, Antarctica (2003–2009). Annals of Glaciology, 52(57): 43–51, doi: 10.3189/17275641 1795931480
    Zhang Xi, Zhu Yixun, Zhang Jie, et al. 2021. Assessment of Arctic sea ice classification ability of Chinese HY-2B dual-band radar altimeter during winter to early spring conditions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 9855–9872, doi: 10.1109/JSTARS.2021.3114228
    Zhong Wenqing, Jiang Maofei, Xu Ke, et al. 2023. Arctic sea ice lead detection from Chinese HY-2B radar altimeter data. Remote Sensing, 15(2): 516, doi: 10.3390/rs15020516
    Zwally H J, Yi Donghui, Kwok R, et al. 2008. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. Journal of Geophysical Research: Oceans, 113(C2): C02S15
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (70) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint