Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Lian He, Senwen Huang, Fengming Hui, Xiao Cheng. An improved algorithm for retrieving thin sea ice thickness in the Arctic Ocean from SMOS and SMAP L-band radiometer data[J]. Acta Oceanologica Sinica, 2024, 43(3): 127-138. doi: 10.1007/s13131-023-2280-9
Citation: Lian He, Senwen Huang, Fengming Hui, Xiao Cheng. An improved algorithm for retrieving thin sea ice thickness in the Arctic Ocean from SMOS and SMAP L-band radiometer data[J]. Acta Oceanologica Sinica, 2024, 43(3): 127-138. doi: 10.1007/s13131-023-2280-9

An improved algorithm for retrieving thin sea ice thickness in the Arctic Ocean from SMOS and SMAP L-band radiometer data

doi: 10.1007/s13131-023-2280-9
Funds:  The National Natural Science Foundation of China under contract Nos 41830536 and 41925027; the Guangdong Natural Science Foundation under contract No. 2023A1515011235; the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. 311021008.
More Information
  • Corresponding author: E-mail: chengxiao9@mail.sysu.edu.cn
  • Received Date: 2023-09-07
  • Accepted Date: 2023-11-27
  • Available Online: 2024-02-19
  • Publish Date: 2024-03-01
  • The aim of this study was to develop an improved thin sea ice thickness (SIT) retrieval algorithm in the Arctic Ocean from the Soil Moisture Ocean Salinity and Soil Moisture Active Passive L-band radiometer data. This SIT retrieval algorithm was trained using the simulated SIT from the cumulative freezing degree days model during the freeze-up period over five carefully selected regions in the Beaufort, Chukchi, East Siberian, Laptev and Kara seas and utilized the microwave polarization ratio (PR) at incidence angle of 40°. The improvements of the proposed retrieval algorithm include the correction for the sea ice concentration impact, reliable reference SIT data over different representative regions of the Arctic Ocean and the utilization of microwave polarization ratio that is independent of ice temperature. The relationship between the SIT and PR was found to be almost stable across the five selected regions. The SIT retrievals were then compared to other two existing algorithms (i.e., UH_SIT from the University of Hamburg and UB_SIT from the University of Bremen) and validated against independent SIT data obtained from moored upward looking sonars (ULS) and airborne electromagnetic (EM) induction sensors. The results suggest that the proposed algorithm could achieve comparable accuracies to UH_SIT and UB_SIT with root mean square error (RMSE) being about 0.20 m when validating using ULS SIT data and outperformed the UH_SIT and UB_SIT with RMSE being about 0.21 m when validatng using EM SIT data. The proposed algorithm can be used for thin sea ice thickness (<1.0 m) estimation in the Arctic Ocean and requires less auxiliary data in the SIT retrieval procedure which makes its implementation more practical.
  • loading
  • Backus G E, Gilbert J F. 1967. Numerical applications of a formalism for geophysical inverse problems. Geophysical Journal International, 13(1–3): 247–276, doi: 10.1111/j.1365-246X.1967.tb02159.x
    Belter H J, Janout M A, Krumpen T, et al. 2019. Daily mean sea ice draft from moored upward-looking sonars in the Laptev Sea between 2013 and 2015. PANGAEA, doi: 10.1594/PANGAEA.899275 [2019/2023-09-01]
    Bilello M A. 1961. Formation, growth, and decay of sea-ice in the Canadian Arctic Archipelago. Arctic, 14(1): 2–24, doi: 10.14430/ARCTIC3658
    Cavalieri D J. 1994. A microwave technique for mapping thin sea ice. Journal of Geophysical Research: Oceans, 99(C6): 12561–12572, doi: 10.1029/94JC00707
    Chaubell J, Chan S, Dunbar R S, et al. 2020. SMAP enhanced L1C radiometer half-orbit 9 km EASE-Grid brightness temperatures, version 3. Boulder, Colorado, USA: NASA National Snow and Ice Data Center, doi: 10.5067/XB8K63YM4U8O, https://nsidc.org/data/spl1ctb_e/versions/3 [2021/2023-09-01]
    Chi J, Kim H C. 2021. Retrieval of daily sea ice thickness from AMSR2 passive microwave data using ensemble convolutional neural networks. GIScience & Remote Sensing, 58(6): 812–830, doi: 10.1080/15481603.2021.1943213
    Corbella I, Torres F, Duffo N, et al. 2011. MIRAS calibration and performance: results from the SMOS in-orbit commissioning phase. IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3147–3155, doi: 10.1109/TGRS.2010.2102769
    Entekhabi D, Njoku E G, O’Neill P E, et al. 2010. The Soil Moisture Active Passive (SMAP) mission. Proceedings of the IEEE, 98(5): 704–716, doi: 10.1109/JPROC.2010.2043918
    Fukamachi Y, Simizu D, Ohshima K I, et al. 2017. Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar. Journal of Glaciology, 63(241): 888–898, doi: 10.1017/jog.2017.56
    Gupta M, Gabarro C, Turiel A, et al. 2019. On the retrieval of sea-ice thickness using SMOS polarization differences. Journal of Glaciology, 65(251): 481–493, doi: 10.1017/jog.2019.26
    Haas C, Casey A, Lensu M. 2021. Safewin 2011 airborne EM sea ice thickness measurements in the Baltic Sea. PANGAEA, doi: 10.1594/PANGAEA.930545, https://doi.pangaea.de/10.1594/PANGAEA.930545 [2021/2023-09-01]
    Hendricks S, Steinhage D, Helm V, et al. 2014. Final report: technical support for the 2014 SMOSice Campaign in SE Svalbard. Bremerhaven, Germany: Alfred Wegener Institute für Polar und Meeresforschung
    Huntemann M, Heygster G, Kaleschke L, et al. 2014. Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations. The Cryosphere, 8(2): 439–451, doi: 10.5194/tc-8-439-2014
    Ivanova N, Pedersen L T, Tonboe R T, et al. 2015. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations. The Cryosphere, 9(5): 1797–1817, doi: 10.5194/tc-9-1797-2015
    Iwamoto K, Ohshima K I, Tamura T, et al. 2013. Estimation of thin ice thickness from AMSR-E data in the Chukchi Sea. International Journal of Remote Sensing, 34(2): 468–489, doi: 10.1080/01431161.2012.712229
    Kaleschke L, Lüpkes C, Vihma T, et al. 2001. SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Canadian Journal of Remote Sensing, 27(5): 526–537, doi: 10.1080/07038992.2001.10854892
    Kaleschke L, Maaß N, Haas C, et al. 2010. A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice. The Cryosphere, 4(4): 583–592, doi: 10.5194/tc-4-583-2010
    Kaleschke L, Tian-Kunze X, Maaß N, et al. 2012. Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period. Geophysical Research Letters, 39(5): L05501, doi: 10.1029/2012GL050916
    Kaleschke L, Tian-Kunze X, Maaß N, et al. 2016. SMOS sea ice product: operational application and validation in the Barents Sea marginal ice zone. Remote Sensing of Environment, 180: 264–273, doi: 10.1016/j.rse.2016.03.009
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    Kashiwase H, Ohshima K I, Fukamachi Y, et al. 2019. Evaluation of AMSR-E thin ice thickness algorithm from a mooring-based observation: how can the satellite observe a sea ice field with nonuniform thickness distribution?. Journal of Atmospheric and Oceanic Technology, 36(8): 1623–1641, doi: 10.1175/JTECH-D-18-0218.1
    Kerr Y H, Waldteufel P, Wigneron J P, et al. 2001. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing, 39(8): 1729–1735, doi: 10.1109/36.942551
    Kim J M, Sohn B J, Lee S M, et al. 2020. Differences between ICESat and CryoSat-2 sea ice thicknesses over the Arctic: consequences for analyzing the ice volume trend. Journal of Geophysical Research: Atmospheres, 125(22): e2020JD033103, doi: 10.1029/2020JD033103
    Kim J M, Sohn B J, Lee S M, et al. 2022. The estimation of the total freeboard of Arctic sea ice in winter using passive microwave satellite measurements. Journal of Atmospheric and Oceanic Technology, 39(10): 1611–1627, doi: 10.1175/JTECH-D-21-0105.1
    Krishfield R, Proshutinsky A. 2006. BGOS ULS Data Processing Procedure. Woods Hole, MA, USA: Woods Hole Oceanographic Institute
    Krishfield R A, Proshutinsky A, Tateyama K, et al. 2014. Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle. Journal of Geophysical Research: Oceans, 119(2): 1271–1305, doi: 10.1002/2013JC008999
    Kwok R. 2018. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13(10): 105005, doi: 10.1088/1748-9326/aae3ec
    Kwok R, Cunningham G F. 2008. ICESat over Arctic sea ice: estimation of snow depth and ice thickness. Journal of Geophysical Research: Oceans, 113(C8): C08010, doi: 10.1029/2008JC004753
    Lavergne T, Eastwood S, Teffah Z, et al. 2010. Sea ice motion from low-resolution satellite sensors: an alternative method and its validation in the Arctic. Journal of Geophysical Research: Oceans, 115(C10): C10032, doi: 10.1029/2009JC005958
    Laxon S, Peacock N, Smith D. 2003. High interannual variability of sea ice thickness in the Arctic region. Nature, 425(6961): 947–950, doi: 10.1038/nature02050
    Lee S M, Meier W N, Sohn B J, et al. 2021. Estimation of Arctic basin-scale sea ice thickness from satellite passive microwave measurements. IEEE Transactions on Geoscience and Remote Sensing, 59(7): 5841–5850, doi: 10.1109/TGRS.2020.3026949
    Liu Yinghui, Key J R, Wang Xuanji, et al. 2020. Multidecadal Arctic sea ice thickness and volume derived from ice age. The Cryosphere, 14(4): 1325–1345, doi: 10.5194/tc-14-1325-2020
    Maaß N, Kaleschke L, Tian-Kunze X, et al. 2013. Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data. The Cryosphere, 7(6): 1971–1989, doi: 10.5194/tc-7-1971-2013
    Mäkynen M, Similä M. 2019. Thin ice detection in the Barents and Kara Seas using AMSR2 high-frequency radiometer data. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7418–7437, doi: 10.1109/TGRS.2019.2913283
    Mäkynen M, Similä M. 2022. AMSR2 thin ice detection algorithm for the Arctic winter conditions. IEEE Transactions on Geoscience and Remote Sensing, 60: 4303718, doi: 10.1109/TGRS.2022.3142966
    Martin S, Drucker R, Kwok R, et al. 2004. Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from Special Sensor Microwave/Imager data, 1990–2001. Journal of Geophysical Research: Oceans, 109(C10): C10012, doi: 10.1029/2004JC002428
    Martin S, Drucker R, Kwok R, et al. 2005. Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E. Geophysical Research Letters, 32(5): L05505, doi: 10.1029/2004GL022013
    Maslanik J, Stroeve J, Fowler C, et al. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13): L13502, doi: 10.1029/2011GL047735
    Maykut G A. 1978. Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research: Oceans, 83(C7): 3646–3658, doi: 10.1029/JC083iC07p03646
    McMullan K D, Brown M A, Martin-Neira M, et al. 2008. SMOS: the payload. IEEE Transactions on Geoscience and Remote Sensing, 46(3): 594–605, doi: 10.1109/TGRS.2007.914809
    Meier W N, Hovelsrud G K, van Oort B E H, et al. 2014. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Reviews of Geophysics, 52(3): 185–217, doi: 10.1002/2013RG000431
    Menashi J D, St Germain K M, Swift C T, et al. 1993. Low-frequency passive-microwave observations of sea ice in the Weddell Sea. Journal of Geophysical Research: Oceans, 98(C12): 22569–22577, doi: 10.1029/93JC02058
    Naoki K, Ukita J, Nishio F, et al. 2008. Thin sea ice thickness as inferred from passive microwave and in situ observations. Journal of Geophysical Research: Oceans, 113(C2): C02S16, doi: 10.1029/2007JC004270
    Paţilea C, Heygster G, Huntemann M, et al. 2019. Combined SMAP–SMOS thin sea ice thickness retrieval. The Cryosphere, 13(2): 675–691, doi: 10.5194/tc-13-675-2019
    Peng Jinzheng, Misra S, Piepmeier J R, et al. 2019. Soil Moisture Active/Passive (SMAP) L-Band microwave radiometer post-launch calibration upgrade. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(6): 1647–1657, doi: 10.1109/JSTARS.2019.2902492
    Petráš I, Bednárová D. 2010. Total least squares approach to modeling: a Matlab toolbox. Acta Montanistica Slovaca, 15(2): 158–170
    Pfaffling A, Haas C, Reid J E. 2007. Direct helicopter EM—Sea-ice thickness inversion assessed with synthetic and field data. Geophysics, 72(4): F127–F137, doi: 10.1190/1.2732551
    Piepmeier J R, Focardi P, Horgan K A, et al. 2017. SMAP L-Band microwave radiometer: instrument design and first year on orbit. IEEE Transactions on Geoscience and Remote Sensing, 55(4): 1954–1966, doi: 10.1109/TGRS.2016.2631978
    Reid J E, Pfaffling A, Vrbancich J. 2006. Airborne electromagnetic footprints in 1D earths. Geophysics, 71(2): G63–G72, doi: 10.1190/1.2187756
    Ricker R, Hendricks S, Kaleschke L, et al. 2017. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere, 11(4): 1607–1623, doi: 10.5194/tc-11-1607-2017
    Sánchez-Gámez P, Gabarro C, Turiel A, et al. 2020. Assessment with controlled in-situ data of the dependence of L-Band radiometry on sea-ice thickness. Remote Sensing, 12(4): 650, doi: 10.3390/rs12040650
    Scott K A, Buehner M, Carrieres T. 2014. An assessment of sea-ice thickness along the Labrador Coast from AMSR-E and MODIS data for operational data assimilation. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2726–2737, doi: 10.1109/TGRS.2013.2265091
    Singh R K, Oza S R, Vyas N K, et al. 2011. Estimation of thin ice thickness from the Advanced Microwave Scanning Radiometer-EOS for coastal polynyas in the Chukchi and Beaufort Seas. IEEE Transactions on Geoscience and Remote Sensing, 49(8): 2993–2998, doi: 10.1109/TGRS.2011.2123101
    Soriot C, Prigent C, Jimenez C, et al. 2023. Arctic sea ice thickness estimation from passive microwave satellite observations between 1.4 and 36 GHz. Earth and Space Science, 10(2): e2022EA002542, doi: 10.1029/2022EA002542
    Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113(C2): C02S03, doi: 10.1029/2005JC003384
    Tamura T, Ohshima K I. 2011. Mapping of sea ice production in the Arctic coastal polynyas. Journal of Geophysical Research: Oceans, 116(C7): C07030, doi: 10.1029/2010JC006586
    Tian-Kunze X, Kaleschke L, Maaß N, et al. 2014. SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification. The Cryosphere, 8(3): 997–1018, doi: 10.5194/tc-8-997-2014
    Tietsche S, Alonso-Balmaseda M, Rosnay P, et al. 2018. Thin Arctic sea ice in L-band observations and an ocean reanalysis. The Cryosphere, 12(6): 2051–2072, doi: 10.5194/tc-12-2051-2018
    Wang Xuanji, Key J R, Liu Yinghui. 2010. A thermodynamic model for estimating sea and lake ice thickness with optical satellite data. Journal of Geophysical Research: Oceans, 115(C12): C12035, doi: 10.1029/2009JC005857
    Yoshizawa E, Shimada K, Cho K H. 2018. Algorithm for flat first-year ice draft using AMSR2 data in the Arctic Ocean. Journal of Atmospheric and Oceanic Technology, 35(11): 2147–2157, doi: 10.1175/JTECH-D-18-0034.1
    Yu Youran, Rothrock D A. 1996. Thin ice thickness from satellite thermal imagery. Journal of Geophysical Research: Oceans, 101(C11): 25753–25766, doi: 10.1029/96JC02242
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (189) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return