Citation: | Zhiqiang Chen, Xidong Wang, Xiangyu Wu, Yuan Cao, Zikang He, Dakui Wang, Jian Chen. Three-dimensional thermohaline structure estimation derived from HY-2 satellite data over the Maritime Silk Road and its applications[J]. Acta Oceanologica Sinica, 2024, 43(5): 41-53. doi: 10.1007/s13131-023-2299-6 |
Ballabrera-Poy J, Mourre B, Garcia-Ladona E, et al. 2009. Linear and non-linear T-S models for the eastern North Atlantic from Argo data: Role of surface salinity observations. Deep-Sea Research Part I: Oceanographic Research Papers, 56(10): 1605–1614, doi: 10.1016/j.dsr.2009.05.017
|
Ballarotta M, Ubelmann C, Veillard P, et al. 2023. Improved global sea surface height and current maps from remote sensing and in situ observations. Earth System Science Data, 15(1): 295–315, doi: 10.5194/essd-15-295-2023
|
Bao Senliang, Wang Huizan, Zhang Ren, et al. 2019. Comparison of satellite-derived sea surface salinity products from SMOS, aquarius, and SMAP. Journal of Geophysical Research: Oceans, 124(3): 1932–1944, doi: 10.1029/2019JC014937
|
Buongiorno Nardelli B, Guinehut S, Pascual A, et al. 2012. Towards high resolution mapping of 3-D mesoscale dynamics from observations. Ocean Science, 8(5): 885–901, doi: 10.5194/os-8-885-2012
|
Burnett W, Harper S, Preller R, et al. 2014. Overview of operational ocean forecasting in the US Navy: past, present, and future. Oceanography, 27(3): 24–31, doi: 10.5670/oceanog.2014.65
|
Carnes M R, Mitchell J L, De Witt P W. 1990. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles. Journal of Geophysical Research: Oceans, 95(C10): 17979–17992, doi: 10.1029/JC095iC10p17979
|
Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116(C6): C06018, doi: 10.1029/2010 JC006716
|
Chen Zhiqiang, Wang Xidong, Liu Lei. 2020. Reconstruction of three-dimensional ocean structure from sea surface data: an application of isQG method in the Southwest Indian Ocean. Journal of Geophysical Research: Oceans, 125(6): e2020jc016351, doi: 10.1029/2020JC016351
|
Chen Zhiqiang, Wang Xidong, Liu Lei, et al. 2023. Estimating three-dimensional structures of eddy in the South Indian Ocean from the satellite observations based on the isQG method. Earth and Space Science, 10(10): e2023EA002991, doi: 10.1029/2023 EA002991
|
Cheng Lijing, Zhu Jiang, Sriver R L. 2015. Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data. Ocean Science, 11(5): 719–741, doi: 10.5194/os-11-719-2015
|
Copernicus Marine Service. 2023. Global ocean physics analysis and forecast. https://data.marine.copernicus.eu/product/GLOBAL_ANALYSISFORECAST_PHY_001_024/description [2023-11-30/2023-12-29], doi: 10.48670/moi-00016
|
Dash P, Ignatov A, Martin M, et al. 2012. Group for high resolution sea surface temperature (GHRSST) analysis fields inter-comparisons—Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM). Deep-Sea Research Part II: Topical Studies in Oceanography, 77–80: 31–43, doi: 10.1016/j.dsr2. 2012.04.002
|
Dong Changming, Xu Guangjun, Han Guoqing, et al. 2022. Recent developments in artificial intelligence in oceanography. Ocean-Land-Atmosphere Research, 2022: 9870950, doi: 10.34133/2022/9870950
|
Dong Chao, Chen Dake, Wang Dongxiao, et al. 2023. Intelligent swift ocean observing system. Ocean-Land-Atmosphere Research, 2: 0022., doi: 10.34133/olar.0022
|
Fox D N, Teague W J, Barron C N, et al. 2002. The modular ocean data assimilation system (MODAS). Journal of Atmospheric and Oceanic Technology, 19(2): 240–252, doi: 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
|
Guinehut S, Dhomps A L, Larnicol G, et al. 2012. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5): 845–857, doi: 10.5194/os-8-845-2012
|
Guinehut S, Le Traon P Y, Larnicol G, et al. 2004. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields—a first approach based on simulated observations. Journal of Marine Systems, 46(1–4): 85–98, doi: 10.1016/j.jmarsys.2003.11.022
|
He Zikang, Wang Xidong, Wu Xinrong, et al. 2021. Projecting three-dimensional ocean thermohaline structure in the North Indian Ocean from the satellite sea surface data based on a variational method. Journal of Geophysical Research: Oceans, 126(1): e2020JC016759, doi: 10.1029/2020JC016759
|
Huang Longyu, Yang Jingsong, Ma Zetai, et al. 2023. High-frequency observations of oceanic internal waves from geostationary orbit satellites. Ocean-Land-Atmosphere Research, 2: 0024., doi: 10.34133/olar.0024
|
Hurlburt H E. 1986. Dynamic transfer of simulated altimeter data into subsurface information by a numerical ocean model. Journal of Geophysical Research: Oceans, 91(C2): 2372–2400, doi: 10.1029/JC091iC02p02372
|
Isern-Fontanet J, Ballabrera-Poy J, Turiel A, et al. 2017. Remote sensing of ocean surface currents: A review of what is being observed and what is being assimilated. Nonlinear Processes in Geophysics, 24(4): 613–643, doi: 10.5194/npg-24-613-2017
|
Isern-Fontanet J, Lapeyre G, Klein P, et al. 2008. Three-dimensional reconstruction of oceanic mesoscale currents from surface information. Journal of Geophysical Research, 113(C9): C09005, doi: 10.1029/2007JC004692
|
Knapp K R, Kruk M C, Levinson D H, et al. 2010. The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bulletin of the American Meteorological Society, 91(3): 363–376., doi: 10.1175/2009BAMS2755.1
|
Liu Lei, Peng Shiqiu, Huang Ruixin. 2017. Reconstruction of ocean’s interior from observed sea surface information. Journal of Geophysical Research: Oceans, 122(2): 1042–1056, doi: 10.1002/2016JC011927
|
Liu Lei, Xue Huijie. 2022. Estimating the Ocean Interior from Satellite Observations in the Kerguelen Area (Southern Ocean): A combined investigation using high-resolution CTD data from animal-borne instruments. Journal of Physical Oceanography, 52(10): 2463–2478, doi: 10.1175/JPO-D-21-0183.1
|
Liu Lei, Yu Xiaolong, Xue Huijie, et al. 2023. Reconstructability of open-ocean upper-layer dynamics from surface observations using surface quasigeostrophy (SQG) theory. Journal of Geophysical Research: Oceans, 128(12): e2023JC020124., doi: 10.1029/2023JC020124
|
Ma Zhanhong, Fei Jianfang, Huang Xiaogang, et al. 2018. Modulating effects of mesoscale oceanic eddies on sea surface temperature response to tropical cyclones over the Western North Pacific. Journal of Geophysical Research: Atmospheres, 123(1): 367–379., doi: 10.1002/2017JD027806
|
Martin M, Dash P, Ignatov A, et al. 2012. Group for high resolution sea surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE). Deep-Sea Research Part II: Topical Studies in Oceanography, 77–80: 21–30, doi: 10.1016/j.dsr2.2012.04.013
|
Mei Wei, Pasquero C. 2013. Spatial and temporal characterization of sea surface temperature response to tropical cyclones. Journal of Climate, 26(11): 3745–3765, doi: 10.1175/JCLI-D-12-00125.1
|
Morrow R, Fu L L, Ardhuin F, et al. 2019. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission. Frontiers in Marine Science, 6: 232, doi: 10.3389/fmars.2019.00232
|
Mulet S, Rio M H, Mignot A, et al. 2012. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep-Sea Research Part II: Topical Studies in Oceanography, 77–80: 70–81, doi: 10.1016/j.dsr2.2012.04.012
|
Nan Feng, He Zhigang, Zhou Hui, et al. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05002, doi: 10.1029/2010JC006790
|
National Centers for Environmental Information. 2023. WOA 2018 Data Access: Statistical mean of temperature on 1° grid for all decades. https://www.ncei.noaa.gov/products/world-ocean-atlas [2018-09-30/2023-12-29]
|
Price J F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2): 153–175, doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
|
Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24(2): 233–260, doi: 10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
|
Qiao Fangli, Wang Guansuo, Khokiattiwong S, et al. 2019. China published ocean forecasting system for the 21st-Century Maritime Silk Road on December 10, 2018. Acta Oceanologica Sinica, 38(1): 1–3, doi: 10.1007/s13131-019-1365-y
|
Qiu Bo, Chen Shuiming, Klein P, et al. 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific subtropical countercurrent. Journal of Physical Oceanography, 44(12): 3079–3098, doi: 10.1175/JPO-D-14-0071.1
|
Riser S C, Freeland H J, Roemmich D, et al. 2016. Fifteen years of ocean observations with the global Argo array. Nature Climate Change, 6(2): 145–153, doi: 10.1038/nclimate2872
|
Su Hua, Lu Wenfang, Wang An, Zhang Tianyi. 2023. Al-based subsurface thermohaline structure retrieval from remote sensing observations. In: Li Xiaofeng, Wang Fan, eds, Artificial Intelligence Oceanography. Singapore: Springer Nature Singapore, 105–123, doi: 10.1007/978-981-19-6375-9_5
|
Tang Bo, Zhao Dandan, Cui Chaoran, et al. 2022. Reconstruction of ocean temperature and salinity profiles in the northern South China Sea using satellite observations. Frontiers in Marine Science, 9: 945835, doi: 10.3389/fmars.2022.945835
|
Wang Xidong, Chu P C, Han Guijun, et al. 2012a. A fully conserved minimal adjustment scheme with (T, S) coherency for stabilization of hydrographic profiles. Journal of Atmospheric and Oceanic Technology, 29(12): 1854–1865, doi: 10.1175/JTECH-D-12-00025.1
|
Wang Xidong, Li Wei, Qi Yiquan, et al. 2012b. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait. Deep-Sea Research Part I: Oceanographic Research Papers, 61: 21–33, doi: 10.1016/j.dsr.2011.11.006
|
Xie Huarong, Xu Qing, Cheng Yongcun, et al. 2022. Reconstruction of subsurface temperature field in the south china sea from satellite observations based on an attention U-Net model. IEEE Transactions on Geoscience and Remote Sensing, 60: 4209319, doi: 10.1109/TGRS.2022.3200545
|
Yan Hengqian, Zhang Ren, Wang Huizan, et al. 2021a. A surface quasi-geostrophic—based dynamical-statistical framework to retrieve interior temperature/salinity from ocean surface. Journal of Geophysical Research: Oceans, 126(10): e2020JC017139, doi: 10.1029/2020JC017139
|
Yan Hengqian, Wang Huizan, Zhang Ren, et al. 2021b. The inconsistent pairs between in situ observations of near surface salinity and multiple remotely sensed salinity data. Earth and Space Science, 8(5): e2020EA001355, doi: 10.1029/2020EA001355
|
Yang Yikai, Wang Dongxiao, Wang Qiang, et al. 2019. Eddy-induced transport of saline kuroshio water into the northern South China Sea. Journal of Geophysical Research: Oceans, 124(9): 6673–6687, doi: 10.1029/2018JC014847
|
Zhou Lei, Chen Dake, Lei Xiaotu, et al. 2019. Progress and perspective on interactions between ocean and typhoon. Chinese Science Bulletin, 64(1): 60–72, doi: 10.1360/N972018-00668
|