Citation: | Xiaoheng Mou, Wenming Lin. An improved wind quality control for the China-France Oceanography Satellite (CFOSAT) scatterometer[J]. Acta Oceanologica Sinica, 2024, 43(5): 100-109. doi: 10.1007/s13131-024-2322-y |
Brennan M J, Hennon C C, Knabb R D. 2009. The operational use of QuikSCAT ocean surface vector winds at the National Hurricane Center. Weather and Forecasting, 24(3): 621–645, doi: 10.1175/2008WAF2222188.1
|
Chen Yaodeng, Cui Yemeng, Lin Wenming, et al. 2023. The impacts of assimilating CFOSAT scatterometer winds for Typhoon cases based on real-time rain quality control. Atmospheric Research, 285: 106621, doi: 10.1016/j.atmosres.2023.106621
|
Huddleston J N, Stiles B W. 2000. A multidimensional histogram rain-flagging technique for SeaWinds on QuikSCAT. In: Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 3: 1232–1234,doi: 10.1109/IGARSS.2000.858077
|
Huffman G J, Bolvin D T, Braithwaite D, et al. 2018. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Greenbelt, MD, USA: NASA.https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf [2018-02-07/2023-12-20]
|
Lang Shuyan, Lin Wenming, Zhang Yi, et al. 2022. On the quality control of HY-2 scatterometer high winds. Remote Sensing, 14(21): 5565, doi: 10.3390/rs14215565
|
Lin Wenming, Dong Xiaolong, Portabella M, et al. 2019. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 627–639, doi: 10.1109/TGRS.2018.2858852
|
Lin Wenming, Portabella M. 2017. Toward an improved wind quality control for RapidScat. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3922–3930, doi: 10.1109/TGRS.2017.2683720
|
Lin Wenming, Portabella M, Stoffelen A, et al. 2014. Rain identification in ASCAT winds using singularity analysis. IEEE Geoscience and Remote Sensing Letters, 11(9): 1519–1523, doi: 10.1109/LGRS.2014.2298095
|
Lin Wenming, Portabella M, Stoffelen A, et al. 2015a. ASCAT wind quality control near rain. IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4165–4177, doi: 10.1109/TGRS.2015.2392372
|
Lin Wenming, Portabella M, Stoffelen A, et al. 2015b. ASCAT wind quality under high subcell wind variability conditions. Journal of Geophysical Research: Oceans, 120(8): 5804–5819, doi: 10.1002/2015JC010861
|
Lin Wenming, Portabella M, Turiel A, et al. 2016. An improved singularity analysis for ASCAT wind quality control: Application to low winds. IEEE Transactions on Geoscience and Remote Sensing, 54(7): 3890–3898, doi: 10.1109/TGRS.2016.2529700
|
Liu W T, Katsaros K B, Businger J A. 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of the Atmospheric Sciences, 36(9): 1722–1735, doi: 10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
|
Liu Jianqiang, Lin Wenming, Dong Xiaolong, et al. 2020. First results from the rotating fan beam scatterometer onboard CFOSAT. IEEE Transactions on Geoscience and Remote Sensing, 58(12): 8793–8806, doi: 10.1109/TGRS.2020.2990708
|
Liu Siqi, Lin Wenming, Portabella M, et al. 2022. Characterization of tropical cyclone intensity using the HY-2B scatterometer wind data. Remote Sensing, 14(4): 1035, doi: 10.3390/rs14041035
|
Mironov A S, Quilfen Y, Piolle J F, et al. 2023. A method for continues calibration of a rotating antenna scatterometer in application to CFOSAT measurements. In: Proceedings of the IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, CA, USA: IEEE, 4072–4075
|
Mou Xiaoheng, Lin Wenming, He Yijun. 2023. Towards a consistent wind data record for the CFOSAT scatterometer. Remote Sensing, 15(8): 2081, doi: 10.3390/rs15082081
|
Peng Yihuan, Xie Xuetong, Lin Mingsen, et al. 2021. A study of sea surface rain identification based on HY-2A scatterometer. Remote Sensing, 13(17): 3475, doi: 10.3390/rs13173475
|
Pierson Jr W J. 1989. Probabilities and statistics for backscatter estimates obtained by a scatterometer. Journal of Geophysical Research: Oceans, 94(C7): 9743–9759
|
Portabella M, Lin Wenming, Stoffelen A, et al. 2021. Consolidation of quality control procedures for scatterometers. In: Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE, 1630–1633
|
Portabella M, Stoffelen A. 2001. Rain detection and quality control of SeaWinds. Journal of Atmospheric and Oceanic Technology, 18(7): 1171–1183, doi: 10.1175/1520-0426(2001)018<1171:RDA QCO>2.0.CO;2
|
Portabella M, Stoffelen A. 2002a. A comparison of KNMI quality control and JPL rain flag for SeaWinds. Canadian Journal of Remote Sensing, 28(3): 424–430, doi: 10.5589/m02-040
|
Portabella M, Stoffelen A. 2002b. Characterization of residual information for SeaWinds quality control. IEEE transactions on geoscience and remote sensing, 40(12): 2747–2759, doi: 10.1109/TGRS.2002.807750
|
Portabella M, Stoffelen A, Lin Wenming, et al. 2012. Rain effects on ASCAT-retrieved winds: Toward an improved quality control. IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2495–2506, doi: 10.1109/TGRS.2012.2185933
|
Prakash S, Mitra A K, Pai D S, et al. 2016. From TRMM to GPM: How well can heavy rainfall be detected from space?. Advances in Water Resources, 88: 1–7
|
Stiles B W, Dunbar R S. 2010. A neural network technique for improving the accuracy of scatterometer winds in rainy conditions. IEEE Transactions on Geoscience and Remote Sensing, 48(8): 3114–3122, doi: 10.1109/TGRS.2010.2049362
|
Stiles B W, Yueh S H. 2002. Impact of rain on spaceborne Ku-band wind scatterometer data. IEEE Transactions on Geoscience and Remote Sensing, 40(9): 1973–1983, doi: 10.1109/TGRS.2002.803846
|
Stoffelen A, Anderson D. 1997. Scatterometer data interpretation: Measurement space and inversion. Journal of Atmospheric and Oceanic Technology, 14(6): 1298–1313, doi: 10.1175/1520-0426(1997)014<1298:SDIMSA>2.0.CO;2
|
Stoffelen A, Portabella M. 2006. On Bayesian scatterometer wind inversion. IEEE Transactions on Geoscience and Remote Sensing, 44(6): 1523–1533, doi: 10.1109/TGRS.2005.862502
|
Tournadre J, Quilfen Y. 2003. Impact of rain cell on scatterometer data: 1. Theory and modeling. Journal of Geophysical Research: Oceans, 108(C7): 3225
|
Verhoef A, Vogelzang J, Verspeek J, et al. 2015. PenWP user manual and reference guide. KNMI, De Bilt, the Netherlands: NWP SAF Rep. NWPSAF-KN-UD-009. https://knmi-scatterometer-website-prd.s3.amazonaws.com/publications/NWPSAF-KN-UD-009_PenWP_User_Guide_v4.0.pdf [2022–08/2023–12–23]
|
Weissman D E, Bourassa M A. 2008. Measurements of the effect of rain-induced sea surface roughness on the QuikSCAT scatterometer radar cross section. IEEE Transactions on Geoscience and Remote Sensing, 46(10): 2882–2894, doi: 10.1109/TGRS.2008.2001032
|
Xu Ying, Liu Jianqiang, Xie Lingling, et al. 2019. China-France Oceanography Satellite (CFOSAT) simultaneously observes the typhoon-induced wind and wave fields. Acta Oceanologica Sinica, 38(11): 158–161, doi: 10.1007/s13131-019-1506-3
|
Xu Xingou, Stoffelen A. 2020. Improved rain screening for Ku-band wind scatterometry. IEEE Transactions on Geoscience and Remote sensing, 58(4): 2494–2503, doi: 10.1109/TGRS.2019.2951726
|
Xu Xingou, Stoffelen A, Lin Wenming, et al. 2022. Rain false-alarm-rate reduction for CSCAT. IEEE Geoscience and Remote Sensing Letters, 19: 1–5
|
Zhao Xiaokang, Lin Wenming, Portabella M, et al. 2022. Effects of rain on CFOSAT scatterometer measurements. Remote Sensing of Environment, 274: 113015, doi: 10.1016/j.rse.2022.113015
|