Citation: | Haihan Hu, Jiechen Zhao, Jingkai Ma, Igor Bashmachnikov, Natalia Gnatiuk, Bo Xu, Fengming Hui. The sudden ocean warming and its potential influences on early-frozen landfast ice in the Prydz Bay, East Antarctica[J]. Acta Oceanologica Sinica, 2024, 43(5): 65-77. doi: 10.1007/s13131-024-2326-7 |
Allison I. 1981. Antarctic ice growth and oceanic heat flux. IAHS Publication, (131): 161–170
|
Bigg P H. 1967. Density of water in SI units over the range 0–40 C. British Journal of Applied Physics, 18(4): 521–525, doi: 10.1088/0508-3443/18/4/315
|
E Dongchen, Huang Jifeng, Zhang Shengkai. 2013. Analysis of tidal features of Zhongshan Station, East Antarctic. Geomatics and Information Science of Wuhan University (in Chinese), 38(4): 379–382,464
|
Ebert E E, Schramm J L, Curry J A. 1995. Disposition of solar radiation in sea ice and the upper ocean. Journal of Geophysical Research: Oceans, 100(C8): 15965–15975, doi: 10.1029/95JC01672
|
Guo Guijun, Shi Jiuxin, Gao Libao, et al. 2019. Reduced sea ice production due to upwelled oceanic heat flux in Prydz Bay, East Antarctica. Geophysical Research Letters, 46(9): 4782–4789, doi: 10.1029/2018GL081463
|
Guo Guijun, Shi Jiuxin, Jiao Yutian. 2015. Temporal variability of vertical heat flux in the Makarov Basin during the ice camp observation in summer 2010. Acta Oceanologica Sinica, 34(11): 118–125, doi: 10.1007/s13131-015-0755-z
|
Heil P. 2006. Atmospheric conditions and fast ice at Davis, East Antarctica: A case study. Journal of Geophysical Research: Oceans, 111(C5): C05009
|
Heil P, Allison I, Lytle V I. 1996. Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover. Journal of Geophysical Research: Oceans, 101(C11): 25741–25752, doi: 10.1029/96JC01921
|
Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049, doi: 10.1002/qj.3803
|
Himmich K, Vancoppenolle M, Madec G, et al. 2023. Drivers of Antarctic sea ice advance. Nature Communications, 14: 6219, doi: 10.1038/s41467-023-41962-8
|
Hu Haihan, Zhao Jiechen, Heil P, et al. 2023. Annual evolution of the ice-ocean interaction beneath landfast ice in Prydz Bay, East Antarctica. The Cryosphere, 17(6): 2231–2244, doi: 10.5194/tc-17-2231-2023
|
Huang N E, Shen Z, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971): 903–995
|
Kirillov S, Dmitrenko I, Babb D, et al. 2015. The effect of ocean heat flux on seasonal ice growth in Young Sound (Northeast Greenland). Journal of Geophysical Research: Oceans, 120(7): 4803–4824, doi: 10.1002/2015JC010720
|
Lei Ruibo, Cheng Bin, Hoppmann M, et al. 2022. Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019–2020. Elementa: Science of the Anthropocene, 10(1): 000089, doi: 10.1525/elementa.2021.000089
|
Lei Ruibo, Li Zhijun, Cheng Bin, et al. 2010. Annual cycle of landfast sea ice in Prydz Bay, east Antarctica. Journal of Geophysical Research: Oceans, 115(C2): C02006
|
Lei Ruibo, Li Na, Heil P, et al. 2014. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean. Journal of Geophysical Research: Oceans, 119(1): 537–547, doi: 10.1002/2012JC008731
|
Li Na, Lei Ruibo, Heil P, et al. 2023. Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica. The Cryosphere, 17(2): 917–937, doi: 10.5194/tc-17-917-2023
|
Li Xinqing, Shokr M, Hui Fengming, et al. 2020. The spatio-temporal patterns of landfast ice in Antarctica during 2006–2011 and 2016–2017 using high-resolution SAR imagery. Remote Sensing of Environment, 242: 111736, doi: 10.1016/j.rse.2020.111736
|
Lytle V I, Massom R, Bindoff N, et al. 2000. Wintertime heat flux to the underside of East Antarctic pack ice. Journal of Geophysical Research: Oceans, 105(C12): 28759–28769, doi: 10.1029/2000JC900099
|
Massom R A, Giles A B, Fricker H A, et al. 2010. Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: Another factor in ice sheet stability?. Journal of Geophysical Research: Oceans, 115(C12): C12027
|
Massom R, Hill K, Barbraud C, et al. 2009. Fast ice distribution in Adélie Land, East Antarctica: Interannual variability and implications for emperor penguins Aptenodytes forsteri. Marine Ecology Progress Series, 374: 243–257, doi: 10.3354/meps07734
|
Maykut G A. 1986. The surface heat and mass balance. In: Untersteiner N, ed. The Geophysics of Sea Ice. New York: Springer, 395–463
|
Maykut G A, McPhee M G. 1995. Solar heating of the Arctic mixed layer. Journal of Geophysical Research: Oceans, 100(C12): 24691–24703, doi: 10.1029/95JC02554
|
Maykut G A, Untersteiner N. 1971. Some results from a time-dependent thermodynamic model of sea ice. Journal of Geophysical Research, 76(6): 1550–1575., doi: 10.1029/JC076i006p01550
|
McMinn A, Ashworth C, Ryan K. 2000. In situ net primary productivity of an Antarctic fast ice bottom algal community. Aquatic Microbial Ecology, 21: 177–185, doi: 10.3354/ame021177
|
McPhee M G. 1979. The effect of the oceanic boundary layer on the mean drift of pack ice: Application of a simple model. Journal of Physical Oceanography, 9(2): 388–400, doi: 10.1175/1520-0485(1979)009<0388:TEOTOB>2.0.CO;2
|
McPhee M G. 1992. Turbulent heat flux in the upper ocean under sea ice. Journal of Geophysical Research: Oceans, 97(C4): 5365–5379, doi: 10.1029/92JC00239
|
McPhee M G. 2002. Turbulent stress at the ice/ocean interface and bottom surface hydraulic roughness during the SHEBA drift. Journal of Geophysical Research: Oceans, 107(C10): 8037
|
McPhee M G, Ackley S F, Guest P, et al. 1996. The Antarctic zone flux experiment. Bulletin of the American Meteorological Society, 77(6): 1221–1232, doi: 10.1175/1520-0477(1996)077<1221:TAZFE>2.0.CO;2
|
McPhee M G, Kottmeier C, Morison J H. 1999. Ocean heat flux in the central Weddell Sea during winter. Journal of Physical Oceanography, 29(6): 1166–1179, doi: 10.1175/1520-0485(1999)029<1166:OHFITC>2.0.CO;2
|
McPhee M G, Morison J H, Nilsen F. 2008. Revisiting heat and salt exchange at the ice-ocean interface: Ocean flux and modeling considerations. Journal of Geophysical Research: Oceans, 113(C6): C06014
|
McPhee M G, Untersteiner N. 1982. Using sea ice to measure vertical heat flux in the ocean. Journal of Geophysical Research: Oceans, 87(C3): 2071–2074, doi: 10.1029/JC087iC03p02071
|
Meehl G A, Arblaster J M, Chung C T Y, et al. 2019. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nature Communications, 10: 14, doi: 10.1038/s41467-018-07865-9
|
Miles B W J, Stokes C R, Jamieson S S R. 2017. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up. The Cryosphere, 11(1): 427–442, doi: 10.5194/tc-11-427-2017
|
Millero F J. 1978. Freezing point of seawater. Eighth Report of the Joint Panel on Oceanographic Tables and Standards (JPOTS). UNESCO technical papers in marine sciences. 28: 29–35
|
Millero F J, Poisson A. 1981. International one-atmosphere equation of state of seawater. Deep-Sea Research Part A. Oceanographic Research Papers, 28(6): 625–629
|
Moreau S, Boyd P W, Strutton P G. 2020. Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone. Nature Communications, 11: 3108, doi: 10.1038/s41467-020-16931-0
|
Pan Haidong, Lv Xianqing, Wang Yingying, et al. 2018. Exploration of tidal-fluvial interaction in the Columbia River Estuary using S_TIDE. Journal of Geophysical Research: Oceans, 123(9): 6598–6619, doi: 10.1029/2018JC014146
|
Parkinson C L, Cavalieri D J. 2012. Antarctic sea ice variability and trends, 1979–2010. The Cryosphere, 6(4): 871–880, doi: 10.5194/tc-6-871-2012
|
Perovich D K, Elder B. 2002. Estimates of ocean heat flux at SHEBA. Geophysical Research Letters, 29(9): 58-1–58-4.
|
Peterson A K, Fer I, McPhee M G, et al. 2017. Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice. Journal of Geophysical Research: Oceans, 122(2): 1439–1456, doi: 10.1002/2016JC012283
|
Purdie C R, Langhorne P J, Leonard G H, et al. 2006. Growth of first-year landfast Antarctic sea ice determined from winter temperature measurements. Annals of Glaciology, 44: 170–176, doi: 10.3189/172756406781811853
|
Purich A, Doddridge E W. 2023. Record low Antarctic sea ice coverage indicates a new sea ice state. Communications Earth & Environment, 4: 314
|
Semtner A J. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. Journal of Physical Oceanography, 6(3): 379–389, doi: 10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
|
Singh H K A, Landrum L, Holland M M, et al. 2021. An overview of Antarctic sea ice in the community earth system model version 2, Part I: Analysis of the seasonal cycle in the context of sea ice thermodynamics and coupled atmosphere-ocean-ice processes. Journal of Advances in Modeling Earth Systems, 13(3): e2020MS002143, doi: 10.1029/2020MS002143
|
Sirevaag A. 2009. Turbulent exchange coefficients for the ice/ocean interface in case of rapid melting. Geophysical Research Letters, 36(4): L04606
|
Sirevaag A, Fer I. 2009. Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard. Journal of Physical Oceanography, 39(12): 3049–3069, doi: 10.1175/2009JPO4172.1
|
Stammerjohn S, Massom R, Rind D, et al. 2012. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophysical Research Letters, 39(6): L06501
|
Untersteiner N. 1961. On the mass and heat budget of arctic sea ice. Archiv für Meteorologie, Geophysik und Bioklimatologie Serie A, 12(2): 151–182
|
Welch P. 1967. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2): 70–73, doi: 10.1109/TAU.1967.1161901
|
Yang Yu, Li Zhijun, Leppäranta M, et al. 2016. Modelling the thickness of landfast sea ice in Prydz Bay, East Antarctica. Antarctic Science, 28(1): 59–70, doi: 10.1017/S0954102015000449
|
Zhang Liping, Delworth T L, Yang Xiaosong, et al. 2022. The relative role of the subsurface Southern Ocean in driving negative Antarctic Sea ice extent anomalies in 2016–2021. Communications Earth & Environment, 3: 302
|
Zhao Jiechen, Cheng Jingjing, Tian Zhongxiang, et al. 2022. Snow and ice thicknesses derived from Fast Ice Prediction System Version 2.0 (FIPS V2.0) in Prydz Bay, East Antarctica: comparison with in-situ observations. Big Earth Data, 6(4): 492–503, doi: 10.1080/20964471.2021.1981196
|
Zhao Jiechen, Cheng Bin, Vihma T, et al. 2020. Fast Ice Prediction System (FIPS) for land-fast sea ice at Prydz Bay, East Antarctica: an operational service for CHINARE. Annals of Glaciology, 61(83): 271–283, doi: 10.1017/aog.2020.46
|
Zhao Jiechen, Cheng Bin, Yang Qinghua, et al. 2017a. Observations and modelling of first-year ice growth and simultaneous second-year ice ablation in the Prydz Bay, East Antarctica. Annals of Glaciology, 58(75pt1): 59–67, doi: 10.1017/aog.2017.33
|
Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. 2017b. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic. Haiyang Xuebao (in Chinese), 39(11): 115–127
|
Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. 2019. Spatial and temporal evolution of landfast ice near Zhongshan Station, East Antarctica, over an annual cycle in 2011/2012. Acta Oceanologica Sinica, 38(5): 51–61, doi: 10.1007/s13131-018-1339-5
|