Volume 43 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Xiaofang Jiang, Feijian Yin. Analysis of coastline changes and influencing factors for the Macao Special Administrative Region based on Neural Network Algorithms[J]. Acta Oceanologica Sinica, 2024, 43(11): 118-130. doi: 10.1007/s13131-024-2437-1
Citation: Xiaofang Jiang, Feijian Yin. Analysis of coastline changes and influencing factors for the Macao Special Administrative Region based on Neural Network Algorithms[J]. Acta Oceanologica Sinica, 2024, 43(11): 118-130. doi: 10.1007/s13131-024-2437-1

Analysis of coastline changes and influencing factors for the Macao Special Administrative Region based on Neural Network Algorithms

doi: 10.1007/s13131-024-2437-1
More Information
  • Corresponding author: E-mail: 1695090635@qq.com
  • Received Date: 2024-04-25
  • Accepted Date: 2024-06-24
  • Available Online: 2024-11-27
  • Publish Date: 2024-11-25
  • The Macao Special Administrative Region is located in the southeastern coastal area of China. The region of Macao was narrow in the history, so land reclamation has become a main means of expanding its geographical scope. Exploring the significance of land reclamation for the planning and urban construction of the Macao region provides valuable references. (1) The Google Earth Engine (GEE) cloud processing platform is used in this study to calculate the modified normalized difference water index (MNDWI) based on Landsat data from 1986 to 2021; (2) the Jenks natural index classification method is used to extract the water body range, and the water body boundary as well as area at different periods is calculated combined with the neural network classification method in the environment for visualizing images (ENVI) software; (3) this study then combines the patch-generating land use simulation (PLUS) model to predict the future trend of shoreline changes in the study area in 2036. The result indicates that the MNDWI and neural net classification method lead to a high classification accuracy with both the overall accuracy (OA) and Kappa coefficient being higher than 87%. Land reclamation activities in Macao were gradually intense from 1986 to 2021, with social and economic conditions such as transportation being main influencing factors, which provides valuable references and inspiration for the regional planning of the Macao Special Administrative Region.
  • loading
  • Adrian J, Sagan V, Maimaitijiang M. 2021. Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 175: 215–235, doi: 10.1016/j.isprsjprs.2021.02.018
    Ahmad S K, Hossain F, Eldardiry H, et al. 2020. A fusion approach for water area classification using visible, near infrared and synthetic aperture radar for South Asian conditions. IEEE Transactions on Geoscience and Remote Sensing, 58(4): 2471–2480, doi: 10.1109/TGRS.2019.2950705
    Andréfouët S, Claereboudt M, Matsakis P, et al. 2001a. Typology of atoll rims in Tuamotu Archipelago (French Polynesia) at landscape scale using SPOT HRV images. International Journal of Remote Sensing, 22(6): 987–1004, doi: 10.1080/014311601300074522
    Andréfouët S, Kramer P, Torres-Pulliza D, et al. 2003. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sensing of Environment, 88(1–2): 128–143, doi: 10.1016/j.rse.2003.04.005
    Andréfouët S, Muller-Karger F E, Hochberg E J, et al. 2001b. Change detection in shallow coral reef environments using Landsat 7 ETM+ data. Remote Sensing of Environment, 78(1–2): 150–162, doi: 10.1016/S0034-4257(01)00256-5
    Bendixen M, Lønsmann Iversen L, Anker Bjørk A, et al. 2017. Delta progradation in Greenland driven by increasing glacial mass loss. Nature, 550(7674): 101–104, doi: 10.1038/nature23873
    Chen Chao, Chen Huixin, Liang Jintao, et al. 2022. Extraction of water body information from remote sensing imagery while considering greenness and wetness based on Tasseled Cap Transformation. Remote Sensing, 14(3): 3001
    Chen Liang-Chieh, Papandreou G, Kokkinos I, et al. 2018. DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834–848, doi: 10.1109/TPAMI.2017.2699184
    Chen Hongruixuan, Wu Chen, Du Bo, et al. 2020. Change detection in multisource VHR images via deep Siamese convolutional multiple-layers recurrent neural network. IEEE Transactions on Geoscience and Remote Sensing, 58(4): 2848–2864, doi: 10.1109/TGRS.2019.2956756
    Dai Chunli, Howat I M, Larour E, et al. 2019. Coastline extraction from repeat high resolution satellite imagery. Remote Sensing of Environment, 229: 260–270, doi: 10.1016/j.rse.2019.04.010
    Duan Lunhao, Hu Xiangyun. 2020. Multiscale refinement network for water-body segmentation in high-resolution satellite imagery. IEEE Geoscience and Remote Sensing Letters, 17(4): 686–690, doi: 10.1109/LGRS.2019.2926412
    Feng Quanlong, Chen Bo’an, Li Guoqing, et al. 2022b. A review for sample datasets of remote sensing imagery. National Remote Sensing Bulletin (in Chinese), 26(4): 589–605, doi: 10.11834/jrs.20221162
    Feng Quanlong, Niu Bowen, Zhu Dehai, et al. 2022a. Review for deep learning in land use and land cover remote sensing classification. Transactions of the Chinese Society of Agricultural Machinery (in Chinese), 53(3): 1–17
    Feng Wenqing, Sui Haigang, Huang Weiming, et al. 2019. Water body extraction from very high-resolution remote sensing imagery using Deep U-Net and a Superpixel-Based Conditional Random Field Model. IEEE Geoscience and Remote Sensing Letters, 16(4): 618–622, doi: 10.1109/LGRS.2018.2879492
    Feyisa G L, Meilby H, Fensholt R, et al. 2014. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140: 23–35, doi: 10.1016/j.rse.2013.08.029
    Gao Feng, Wang Xiao, Gao Yunhao, et al. 2019. Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geoscience and Remote Sensing Letters, 16(8): 1240–1244, doi: 10.1109/LGRS.2019.2895656
    Garajeh M K, Malakyar F, Weng Qihao, et al. 2021. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Science of the Total Environment, 778: 146253, doi: 10.1016/j.scitotenv.2021.146253
    Ge Chuangjie, Xie Wenjun, Meng Lingkui. 2022. Extracting lakes and reservoirs from GF-1 satellite imagery over China using improved U-Net. IEEE Geoscience and Remote Sensing Letters, 19: 1504105
    Geusebroek J M, Smeulders A W M, van de Weijer J. 2003. Fast anisotropic Gauss filtering. IEEE Transactions on Image Processing, 12(8): 938–943, doi: 10.1109/TIP.2003.812429
    Gong Maoguo, Zhou Zhiqiang, Ma Jingjing. 2012. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Transactions on Image Processing, 21(4): 2141–2151, doi: 10.1109/TIP.2011.2170702
    Hertel V, Chow C, Wani O, et al. 2023. Probabilistic SAR-based water segmentation with adapted Bayesian convolutional neural network. Remote Sensing of Environment, 285: 113388, doi: 10.1016/j.rse.2022.113388
    Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504–507, doi: 10.1126/science.1127647
    Hochberg E. 2003. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sensing of Environment, 85(2): 159–173, doi: 10.1016/S0034-4257(02)00201-8
    Houborg R, McCabe M F. 2018. Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data. Remote Sensing, 10(6): 890, doi: 10.3390/rs10060890
    Hu Hongtao, Ban Yifang. 2014. Unsupervised change detection in multitemporal SAR images over large urban areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8): 3248–3261, doi: 10.1109/JSTARS.2014.2344017
    Islam M M, Borgqvist H, Kumar L. 2019. Monitoring mangrove forest landcover changes in the coastline of Bangladesh from 1976 to 2015. Geocarto International, 34(13): 1458–1476, doi: 10.1080/10106049.2018.1489423
    Jiang Wei, He Guojin, Long Tengfei, et al. 2018. Multilayer perceptron neural network for surface water extraction in Landsat 8 OLI satellite images. Remote Sensing, 10(5): 755, doi: 10.3390/rs10050755
    Karaman M. 2021. Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth. Journal of Environmental Management, 298: 113481, doi: 10.1016/j.jenvman.2021.113481
    Li A S, Chirayath V, Segal-Rozenhaimer M, et al. 2020. NASA NeMO-Net's convolutional neural network: mapping marine habitats with spectrally heterogeneous remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5115–5133, doi: 10.1109/JSTARS.2020.3018719
    Li Xiang, Fu Jingying, Jiang Dong, et al. 2022a. Land use optimization in Ningbo City with a coupled GA and PLUS model. Journal of Cleaner Production, 375: 134004, doi: 10.1016/j.jclepro.2022.134004
    Li Ruirui, Liu Wenjie, Yang Lei, et al. 2018. DeepUNet: A deep fully convolutional network for pixel-level Sea-Land segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(11): 3954–3962, doi: 10.1109/JSTARS.2018.2833382
    Li Junjie, Meng Yizhuo, Li Yuanxi, et al. 2022b. Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning. Journal of Hydrology, 612: 128202, doi: 10.1016/j.jhydrol.2022.128202
    Li Yangyang, Peng Cheng, Chen Yanqiao, et al. 2019. A deep learning method for change detection in synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 57(8): 5751–5763, doi: 10.1109/TGRS.2019.2901945
    Liu Xulong, Deng Ruru, Xu Jianhui, et al. 2017. Spatiotemporal evolution characteristics of coastlines and driving force analysis of the Zhujiang River Estuary in the past 40 years. Journal of Geo-information Science, 19(10): 1336–1345
    Lu Ming, Fang Leyuan, Li Muxing, et al. 2022. NFANet: A novel method for weakly supervised water extraction from high-resolution remote-sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 60: 5617114
    Lunetta R S, Knight J F, Ediriwickrema J, et al. 2006. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105(2): 142–154, doi: 10.1016/j.rse.2006.06.018
    McCarthy G D, Haigh I D, Hirschi J J M, et al. 2015. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature, 521(7553): 508–510, doi: 10.1038/nature14491
    Mcfeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425–1432, doi: 10.1080/01431169608948714
    Mumby P J, Edwards A J. 2002. Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sensing of Environment, 82(2–3): 248–257, doi: 10.1016/S0034-4257(02)00041-X
    Nemni E, Bullock J, Belabbes S, et al. 2020. Fully convolutional neural network for rapid flood segmentation in synthetic aperture radar imagery. Remote Sensing, 12(16): 2532, doi: 10.3390/rs12162532
    Ni Jun, Zhang Fan, Yin Qiang, et al. 2021. Random neighbor pixel-block-based deep recurrent learning for polarimetric SAR image classification. IEEE Transactions on Geoscience and Remote Sensing, 59(9): 7557–7569, doi: 10.1109/TGRS.2020.3037209
    Pham B T, Bui D T, Prakash I, et al. 2017. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA, 149: 52–63, doi: 10.1016/j.catena.2016.09.007
    Purkis S, Kenter J A M, Oikonomou E K, et al. 2002. High-resolution ground verification, cluster analysis and optical model of reef substrate coverage on Landsat TM imagery (Red Sea, Egypt). International Journal of Remote Sensing, 23(8): 1677–1698, doi: 10.1080/01431160110047722
    Qiu Chunping, Mou Lichao, Schmitt M, et al. 2020. Fusing multiseasonal Sentinel-2 imagery for urban land cover classification with multibranch residual convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 17(10): 1787–1791, doi: 10.1109/LGRS.2019.2953497
    Rokni K, Ahmad A, Selamat A, et al. 2014. Water feature extraction and change detection using multitemporal landsat imagery. Remote Sensing, 6(5): 4173–4189, doi: 10.3390/rs6054173
    Saxena N, Rathore N. 2013. A review on speckle noise filtering techniques for SAR images. International Journal of Advanced Research in Computer Science and Electronics Engineering, 2(2): 243–247
    Seo D K, Yong H K, Yang D E, et al. 2018. Fusion of SAR and multispectral images using random forest regression for change detection. ISPRS International Journal of Geo-Information, 7(10): 401, doi: 10.3390/ijgi7100401
    Sunder S, Ramsankaran R, Ramakrishnan B. 2017. Erratum to: Inter-comparison of remote sensing-based shoreline mapping techniques at different coastal stretches of India. Environmental Monitoring and Assessment, 189(7): 334, doi: 10.1007/s10661-017-6046-8
    Tseng S H, Sun Weihao. 2022. Sea–land segmentation using HED-UNET for monitoring Kaohsiung Port. Mathematics, 10(22): 4202, doi: 10.3390/math10224202
    Wang Guoli, Fan Bin, Xiang Shiming, et al. 2017. Aggregating rich hierarchical features for scene classification in remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9): 4104–4115, doi: 10.1109/JSTARS.2017.2705419
    Wang Lijuan, Niu Zheng, Zhao Degang, et al. 2010. The study of coastline extraction and validation using ETM remote sensing image. Remote Sensing Technology and Application, 25(2): 235–239
    Wang Jin, Wu Zhifeng, Li Shaoying, et al. 2016. Coastline and land use change detection and analysis with remote sensing in the Zhujiang River Estuary Gulf. Scientia Geographica Sinica (in Chinese), 36(12): 1903–1911
    Wang Xiaobiao, Xie Shunping, Zhang Xueliang, et al. 2018a. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 68: 73–91, doi: 10.1016/j.jag.2018.01.018
    Wang Li, Wang Huan. 2019. Water hazard detection using conditional generative adversarial network with mixture reflection attention units. IEEE Access, 7: 167497–167506, doi: 10.1109/ACCESS.2019.2953768
    Wang Xiaoping, Zhang Fei, Ding Jianli, et al. 2018b. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices. Science of the Total Environment, 615: 918–930, doi: 10.1016/j.scitotenv.2017.10.025
    Wei Jiawei, Feng Lian, Tong Yan, et al. 2023. Long-term observation of global nuclear power plants thermal plumes using Landsat images and deep learning. Remote Sensing of Environment, 295: 113707, doi: 10.1016/j.rse.2023.113707
    Wei Qinyu, Nurmemet I, Gao Minhua, et al. 2022. Inversion of soil salinity using multisource remote sensing data and particle swarm machine learning models in Keriya Oasis, Northwestern China. Remote Sensing, 14(3): 512, doi: 10.3390/rs14030512
    Weng Liguo, Xu Yiming, Xia Min, et al. 2020. Water areas segmentation from remote sensing images using a separable residual SegNet network. ISPRS International Journal of Geo-Information, 9(4): 256, doi: 10.3390/ijgi9040256
    Wieland M, Martinis S, Kiefl R, et al. 2023. Semantic segmentation of water bodies in very high-resolution satellite and aerial images. Remote Sensing of Environment, 287: 113452, doi: 10.1016/j.rse.2023.113452
    Xie Huarong, Xu Qing, Zheng Quanan, et al. 2022. Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea. Acta Oceanologica Sinica, 41(6): 137–145, doi: 10.1007/s13131-022-2015-3
    Xu Hanqiu. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing (in Chinese), 9(5): 589–595
    Xue Weibao, Yang Hui, Wu Yanlan, et al. 2021. Water body automated extraction in polarization SAR images with dense-coordinate-feature-concatenate network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 12073–12087, doi: 10.1109/JSTARS.2021.3129182
    Yang Chenchen, Gan Huayang, Wan Rongsheng, et al. 2021. Spatiotemporal evolution and influencing factors of coastline in the Guangdong-Hong Kong-Macao Greater Bay Area from 1975 to 2018. Geology in China (in Chinese), 48(3): 697–707
    Yang Xiucheng, Qin Qiming, Grussenmeyer P, et al. 2018. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sensing of Environment, 219: 259–270, doi: 10.1016/j.rse.2018.09.016
    Yang Jiechao, Wang Xuelei, Wang Ruihua, et al. 2020. Combination of convolutional neural networks and recurrent neural networks for predicting soil properties using VIS–NIR spectroscopy. Geoderma, 380: 114616, doi: 10.1016/j.geoderma.2020.114616
    Yao Fangfang, Wang Jida, Wang Chao, et al. 2019. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote Sensing of Environment, 232: 111210, doi: 10.1016/j.rse.2019.111210
    Yousif O, Ban Yifang. 2014. Improving SAR-based urban change detection by combining MAP-MRF classifier and nonlocal means similarity weights. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10): 4288–4300, doi: 10.1109/JSTARS.2014.2347171
    Zhang Fan, Du Bo, Zhang Liangpei. 2016. Scene classification via a gradient boosting random convolutional network framework. IEEE Transactions on Geoscience and Remote Sensing, 54(3): 1793–1802, doi: 10.1109/TGRS.2015.2488681
    Zhang Qianqian, Li Li, Sun Ruizhi, et al. 2022b. Retrieval of the soil salinity from Sentinel-1 Dual-Polarized SAR data based on deep neural network regression. IEEE Geoscience and Remote Sensing Letters, 19: 4006905
    Zhang Zhengxin, Liu Qingjie, Wang Yunhong. 2018. Road extraction by deep residual U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5): 749–753, doi: 10.1109/LGRS.2018.2802944
    Zhang Tianyuan, Ren Huazhong, Qin Qiming, et al. 2017b. Surface water extraction from Landsat 8 OLI imagery using the LBV transformation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10): 4417–4429, doi: 10.1109/JSTARS.2017.2719029
    Zhang Guanjin, Roslan S N A B, Wang Ci, et al. 2023. Research on land cover classification of multi-source remote sensing data based on improved U-net network. Scientific Reports, 13(1): 16275, doi: 10.1038/s41598-023-43317-1
    Zhang Zhimian, Wang Haipeng, Xu Feng, et al. 2017a. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(12): 7177–7188, doi: 10.1109/TGRS.2017.2743222
    Zhang Jinsong, Xing Mengdao, Sun Guangcai, et al. 2021. Water body detection in high-resolution SAR images with cascaded fully-convolutional network and variable focal loss. IEEE Transactions on Geoscience and Remote Sensing, 59(1): 316–332, doi: 10.1109/TGRS.2020.2999405
    Zhang Lin, Yuan Feiniu, Zhang Wenrui, et al. 2020. Review of fully convolutional neural network. Computer Engineering and Applications (in Chinese), 56(1): 25–37
    Zhang Shihe, Zhong Quanlin, Cheng Dongliang, et al. 2022a. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecological Indicators, 136: 108642, doi: 10.1016/j.ecolind.2022.108642
    Zhao Wenzhi, Du Shihong. 2016. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 113: 155–165, doi: 10.1016/j.isprsjprs.2016.01.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (66) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return