Volume 40 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Weiguo Wang, Mengwei Zhao, Yanguang Liu, Min Jiang, Chengqiang Wu, Yang Liu. Evolution of the North Atlantic Current and Barents Ice Sheet as revealed by grain size populations in the northern Norwegian Sea during the last 60 ka[J]. Acta Oceanologica Sinica, 2021, 40(10): 106-117. doi: 10.1007/s13131-021-1848-5
Citation: Weiguo Wang, Mengwei Zhao, Yanguang Liu, Min Jiang, Chengqiang Wu, Yang Liu. Evolution of the North Atlantic Current and Barents Ice Sheet as revealed by grain size populations in the northern Norwegian Sea during the last 60 ka[J]. Acta Oceanologica Sinica, 2021, 40(10): 106-117. doi: 10.1007/s13131-021-1848-5

Evolution of the North Atlantic Current and Barents Ice Sheet as revealed by grain size populations in the northern Norwegian Sea during the last 60 ka

doi: 10.1007/s13131-021-1848-5
Funds:  The Basic Scientific Research Operation Fee of the Third Institute of Oceanography, the Ministry of Natural Resources under contract No. 2018006; the project of the Chinese Arctic and Antarctic Administration of the State Oceanic Administration under contract No. CHINARE2016-03-02; the Shandong Provincial Natural Science Foundation under contract No. ZR2019BD054.
More Information
  • Corresponding author: E-mail: yinwei_zhao@163.com
  • Received Date: 2020-04-10
  • Accepted Date: 2021-06-02
  • Available Online: 2021-09-03
  • Publish Date: 2021-10-30
  • The grain size distribution of bulk sediment samples was decomposed in a core to reconstruct paleoceanographic evolution over the past 60 ka in the northern Norwegian Sea. The results show that sediments consisted of 3–4 grain populations derived from the North Atlantic Current (NAC) and Barents Ice Sheet (BIS). The grain size data suggest three palaeoceanographic evolution stages: (1) an environment affected by BIS and NAC and changed with the interstadial/stadial transition in phase with the Greenland ice-core record at 60–31 ka BP, during which discharge of icebergs and the content of the coarsest population containing ice-rafted debris (IRD) in the sediments increased significantly during stadial, while the fine silt population containing volcanic glasses increased with the enhancement of NAC during the interstadial; (2) an extreme environment controlled by BIS at 31–13 ka BP. BIS reached to its maximum at about 31 ka BP and the turbid plumes that formed at the leading edge of BIS contributed to a significant increase in the clayey population in sediments. Icebergs drained into the northern Norwegian Sea with periodical calving of the BIS at 31–19 ka BP. Subsequently, the ablation of the BIS discharged massive floods with clayey sediments and icebergs into the Norwegian Sea at 19–13 ka BP, resulting in a constant increase in clay and IRD in sediments; and (3) a marine environment similar to the present one under the strong influence of NAC following the complete melting of the BIS after 13 ka BP, NAC is the dominant transport agent and no IRD occurred in sediments. The fine silt populations containing volcanic glasses transported by NAC significantly increased.
  • loading
  • [1]
    Aksenov Y, Bacon S, Coward A C, et al. 2010. The North Atlantic inflow to the Arctic Ocean: High-resolution model study. Journal of Marine Systems, 79(1−2): 1–22. doi: 10.1016/j.jmarsys.2009.05.003
    [2]
    Andreassen K, Laberg J S, Vorren T O. 2008. Seafloor geomorphology of the SW Barents Sea and its glaci-dynamic implications. Geomorphology, 97(1−2): 157–177. doi: 10.1016/j.geomorph.2007.02.050
    [3]
    Ashley G M. 1978. Interpretation of polymodal sediments. The Journal of Geology, 86(4): 411–421. doi: 10.1086/649710
    [4]
    Austin W E N, Kroon D. 2001. Deep sea ventilation of the northeastern Atlantic during the last 15, 000 years. Global and Planetary Change, 30(1−2): 13–31. doi: 10.1016/S0921-8181(01)00074-1
    [5]
    Bauch H A, Erlenkeuser H, Spielhagen R F, et al. 2001. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30, 000 yr. Quaternary Science Reviews, 20(4): 659–678. doi: 10.1016/S0277-3791(00)00098-6
    [6]
    Baumann K H, Lackschewitz K S, Mangerud J, et al. 1995. Reflection of scandinavian ice sheet fluctuations in norwegian sea sediments during the past 150, 000 years. Quaternary Research, 43(2): 185–197. doi: 10.1006/qres.1995.1019
    [7]
    Belt S T, Cabedo-Sanz P, Smik L, et al. 2015. Identification of paleo Arctic winter sea ice limits and the marginal ice zone: Optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth and Planetary Science Letters, 431: 127–139. doi: 10.1016/j.jpgl.2015.09.020
    [8]
    Bond G, Showers W, Cheseby M, et al. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278(5341): 1257–1266. doi: 10.1126/science.278.5341.1257
    [9]
    Broecker W S. 1991. The great ocean conveyor. Oceanography, 4(2): 79–89. doi: 10.5670/oceanog.1991.07
    [10]
    Clark P U, Dyke A S, Shakun J D, et al. 2009. The last glacial maximum. Science, 325(5941): 710–714. doi: 10.1126/science.1172873
    [11]
    Clark D L, Hanson A. 1983. Central Arctic Ocean sediment texture: a key to ice transport mechanisms. In: Molnia B F, ed. Glacial-Marine Sedimentation. Boston, MA,USA: Springer, 301–330, doi: 10.1007/978-1-4613-3793-5_7
    [12]
    Darby D A. 2003. Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns. Journal of Geophysical Research: Oceans, 108(C8): 3257. doi: 10.1029/2002JC001350
    [13]
    Darby D A, Myers W B, Jakobsson M, et al. 2011. Modern dirty sea ice characteristics and sources: The role of anchor ice. Journal of Geophysical Research: Oceans, 116: C09008. doi: 10.1029/2010JC006675
    [14]
    Darby D A, Ortiz J, Polyak L, et al. 2009. The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi–Alaskan margin sediments. Global and Planetary Change, 68(1−2): 58–72. doi: 10.1016/j.gloplacha.2009.02.007
    [15]
    Darby D A, Polyak L, Bauch H A. 2006. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas–a review. Progress in Oceanography, 71(2−4): 129–144. doi: 10.1016/j.pocean.2006.09.009
    [16]
    Dethleff D. 2005. Entrainment and export of Laptev Sea ice sediments, Siberian Arctic. Journal of Geophysical Research: Oceans, 110(C7): C07009. doi: 10.1029/2004JC002740
    [17]
    Dickson R R, Brown J. 1994. The production of North Atlantic Deep Water: Sources, rates, and pathways. Journal of Geophysical Research: Oceans, 99(C6): 12319–12341. doi: 10.1029/94JC00530
    [18]
    Dokken T M, Jansen E. 1999. Rapid changes in the mechanism of ocean convection during the last glacial period. Nature, 401(6752): 458–461. doi: 10.1038/46753
    [19]
    Dokken T M, Nisancioglu K H, Li C, et al. 2013. Dansgaard-Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography, 28(3): 491–502. doi: 10.1002/palo.20042
    [20]
    Dowdeswell J A, Elverhøi A, Andrews J T, et al. 1999. Asynchronous deposition of ice-rafted layers in the Nordic seas and North Atlantic Ocean. Nature, 400(6742): 348–351. doi: 10.1038/22510
    [21]
    Eicken H, Gradinger R, Gaylord A, et al. 2005. Sediment transport by sea ice in the Chukchi and Beaufort Seas: Increasing importance due to changing ice conditions?. Deep-Sea Research Part II: Topical Studies in Oceanography, 52(24–26): 3281–3302. doi: 10.1016/j.dsr2.2005.10.006
    [22]
    Eldevik T, Risebrobakken B, Bjune A E, et al. 2014. A brief history of climate–the northern seas from the Last Glacial Maximum to global warming. Quaternary Science Reviews, 106: 225–246. doi: 10.1016/j.quascirev.2014.06.028
    [23]
    Elliot M, Labeyrie L, Dokken T, et al. 2001. Coherent patterns of ice-rafted debris deposits in the Nordic regions during the last glacial (10–60 ka). Earth and Planetary Science Letters, 194(1−2): 151–163. doi: 10.1016/S0012-821X(01)00561-1
    [24]
    Ezat M M, Rasmussen T L, Groeneveld J. 2014. Persistent intermediate water warming during cold stadials in the southeastern Nordic seas during the past 65 k.y. Geology, 42(8): 663–666. doi: 10.1130/G35579.1
    [25]
    Ezat M M, Rasmussen T L, Thornalley D J R, et al. 2017. Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates. Paleoceanography, 32(2): 172–181. doi: 10.1002/2016PA003053
    [26]
    Grootes P M, Stuiver M, White J W C, et al. 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455): 552–554. doi: 10.1038/366552a0
    [27]
    Hansen B, Østerhus S. 2000. North Atlantic–Nordic Seas exchanges. Progress in Oceanography, 45(2): 109–208. doi: 10.1016/S0079-6611(99)00052-X
    [28]
    Heaton T J, Köhler P, Butzin M, et al. 2020. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55, 000 cal BP). Radiocarbon, 62(4): 779–820. doi: 10.1017/RDC.2020.68
    [29]
    Hesse R, Khodabakhsh S, Klaucke I, et al. 1997. Asymmetrical turbid surface-plume deposition near ice-outlets of the Pleistocene Laurentide ice sheet in the Labrador Sea. Geo-Marine Letters, 17(3): 179–187. doi: 10.1007/s003670050024
    [30]
    Hoff U, Rasmussen T L, Stein R, et al. 2016. Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present. Nature Communications, 7(1): 12247. doi: 10.1038/ncomms12247
    [31]
    Hormes A, Gjermundsen E F, Rasmussen T L. 2013. From mountain top to the deep sea–Deglaciation in 4D of the northwestern Barents Sea ice sheet. Quaternary Science Reviews, 75: 78–99. doi: 10.1016/j.quascirev.2013.04.009
    [32]
    Kissel C. 2005. Magnetic signature of rapid climatic variations in glacial North Atlantic, a review. Comptes Rendus Geoscience, 337(10−11): 908–918. doi: 10.1016/j.crte.2005.04.009
    [33]
    Kissel C, Laj C, Labeyrie L, et al. 1999. Rapid climatic variations during marine isotopic stage 3: magnetic analysis of sediments from Nordic Seas and North Atlantic. Earth and Planetary Science Letters, 171(3): 489–502. doi: 10.1016/S0012-821X(99)00162-4
    [34]
    Knies J, Köseoğlu D, Rise L, et al. 2018. Nordic Seas polynyas and their role in preconditioning marine productivity during the Last Glacial Maximum. Nature Communications, 9(1): 3959. doi: 10.1038/s41467-018-06252-8
    [35]
    Kuhlemann J, Lange H, Paetsch H. 1993. Implications of a connection between clay mineral variations and coarse grained debris and lithology in the central Norwegian-Greenland Sea. Marine Geology, 114(1−2): 1–11. doi: 10.1016/0025-3227(93)90036-U
    [36]
    Latarius K, Quadfasel D. 2016. Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets. Deep-Sea Research Part I: Oceanographic Research Papers, 114: 23–42. doi: 10.1016/j.dsr.2016.04.012
    [37]
    Lekens W A H, Sejrup H P, Haflidason H, et al. 2005. Laminated sediments preceding Heinrich event 1 in the Northern North Sea and Southern Norwegian Sea: Origin, processes and regional linkage. Marine Geology, 216(1−2): 27–50. doi: 10.1016/j.margeo.2004.12.007
    [38]
    Lekens W A H, Sejrup H P, Haflidason H, et al. 2006. Meltwater and ice rafting in the southern Norwegian Sea between 20 and 40 calendar kyr B.P.: Implications for Fennoscandian Heinrich events. Paleoceanography, 21(3): PA3013. doi: 10.1029/2005PA001228
    [39]
    Lisitzin A P. 2010. Marine ice-rafting as a new type of sedimentogenesis in the Arctic and novel approaches to studying sedimentary processes. Russian Geology and Geophysics, 51(1): 12–47. doi: 10.1016/j.rgg.2009.12.002
    [40]
    Meland M Y, Dokken T M, Jansen E, et al. 2008. Water mass properties and exchange between the Nordic seas and the northern North Atlantic during the period 23–6 ka: Benthic oxygen isotopic evidence. Paleoceanography, 23(1): PA1210. doi: 10.1029/2007PA001416
    [41]
    Middleton G V. 1976. Hydraulic interpretation of sand size distributions. The Journal of Geology, 84(4): 405–426. doi: 10.1086/628208
    [42]
    Muschitiello F, D’Andrea W J, Schmittner A, et al. 2019. Deep-water circulation changes lead North Atlantic climate during deglaciation. Nature Communications, 10(1): 1272. doi: 10.1038/s41467-019-09237-3
    [43]
    Nagashima K, Asahara Y, Takeuchi F, et al. 2012. Contribution of detrital materials from the Yukon River to the continental shelf sediments of the Bering Sea based on the electron spin resonance signal intensity and crystallinity of quartz. Deep-Sea Research Part II: Topical Studies in Oceanography, 61-64: 145–154. doi: 10.1016/j.dsr2.2011.12.001
    [44]
    Nürnberg D, Wollenburg I, Dethleff D, et al. 1994. Sediments in Arctic sea ice: Implications for entrainment, transport and release. Marine Geology, 119(3−4): 185–214. doi: 10.1016/0025-3227(94)90181-3
    [45]
    Park C S, Hwang S, Yoon S O, et al. 2014. Grain size partitioning in loess–paleosol sequence on the west coast of South Korea using the Weibull function. CATENA, 121: 307–320. doi: 10.1016/j.catena.2014.05.018
    [46]
    Patton H, Hubbard A, Andreassen K, et al. 2017. Deglaciation of the Eurasian ice sheet complex. Quaternary Science Reviews, 169: 148–172. doi: 10.1016/j.quascirev.2017.05.019
    [47]
    Phillips R L, Grantz A. 2001. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic. Marine Geology, 172(1−2): 91–115. doi: 10.1016/S0025-3227(00)00101-8
    [48]
    Polyak L, Alley R B, Andrews J T, et al. 2010. History of sea ice in the Arctic. Quaternary Science Reviews, 29(15−16): 1757–1778. doi: 10.1016/j.quascirev.2010.02.010
    [49]
    Pope E L, Talling P J, Hunt J E, et al. 2016. Long-term record of Barents Sea Ice Sheet advance to the shelf edge from a 140, 000 year record. Quaternary Science Reviews, 150: 55–66. doi: 10.1016/j.quascirev.2016.08.014
    [50]
    Qin Xiaoguang, Cai Binggui, Liu T. 2005. Loess record of the aerodynamic environment in the east Asia monsoon area since 60, 000 years before present. Journal of Geophysical Research: Solid Earth, 110(B1): B01204. doi: 10.1029/2004JB003131
    [51]
    Rasmussen T L, Thomsen E. 2008. Warm Atlantic surface water inflow to the Nordic seas 34–10 calibrated ka B.P. Paleoceanography, 23: PA1201. doi: 10.1029/2007PA001453
    [52]
    Rasmussen T L, Thomsen E. 2009. Ventilation changes in intermediate water on millennial time scales in the SE Nordic seas, 65–14 kyr BP. Geophysical Research Letters, 36(1): L01601. doi: 10.1029/2008GL036563
    [53]
    Rasmussen T L, Thomsen E, Moros M. 2016. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate. Scientific Reports, 6: 20535. doi: 10.1038/srep20535
    [54]
    Rasmussen T L, Thomsen E, van Weering T C E, et al. 1996. Rapid changes in surface and deep water conditions at the Faeroe Margin during the last 58, 000 years. Paleoceanography, 11(6): 757–771. doi: 10.1029/96PA02618
    [55]
    Ruddiman W F. 1977. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geological Society of America Bulletin, 88(12): 1813–1827. doi: 10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2
    [56]
    Sadatzki H, Dokken T M, Berben S M P, et al. 2019. Sea ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Science Advances, 5(3): eaau6174. doi: 10.1126/sciadv.aau6174
    [57]
    Sarnthein M, Pflaumann U, Weinelt M. 2003. Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography, 18(2): 1047. doi: 10.1029/2002PA000771
    [58]
    Simstich J, Lorenz S J, Bauch H A. 2013. Reprint of: Evaluation of past stratification changes in the Nordic Seas by comparing planktonic foraminiferal δ18O with a solar-forced model. Marine Micropaleontology, 99: 45–50. doi: 10.1016/j.marmicro.2013.03.009
    [59]
    Spielhagen R F, Baumann K H, Erlenkeuser H, et al. 2004. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quaternary Science Reviews, 23(11−13): 1455–1483. doi: 10.1016/j.quascirev.2003.12.015
    [60]
    Struve T, Roberts N L, Frank M, et al. 2019. Ice-sheet driven weathering input and water mass mixing in the Nordic Seas during the last 25, 000 years. Earth and Planetary Science Letters, 514: 108–118. doi: 10.1016/j.jpgl.2019.02.030
    [61]
    Sun Donghuai, Bloemendal J, Rea D K, et al. 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology, 152(3−4): 263–277. doi: 10.1016/S0037-0738(02)00082-9
    [62]
    Telesiński M M, Bauch H A, Spielhagen R F, et al. 2015. Evolution of the central Nordic Seas over the last 20 thousand years. Quaternary Science Reviews, 121: 98–109. doi: 10.1016/j.quascirev.2015.05.013
    [63]
    Wang Dong, Hesse R. 1996. Continental slope sedimentation adjacent to an ice-margin. II. Glaciomarine depositional facies on labrador slope and glacial cycles. Marine Geology, 135(1−4): 65–96. doi: 10.1016/S0025-3227(96)00012-6
    [64]
    Wang Qiang, Wekerle C, Wang Xuezhu, et al. 2020a. Intensification of the Atlantic water supply to the Arctic Ocean through fram strait induced by Arctic sea ice decline. Geophysical Research Letters, 47(3): e2019GL086682. doi: 10.1029/2019GL086682
    [65]
    Wang Weiguo, Yang Jichao, Zhao Mengwei, et al. 2020b. Spatial variation in grain-size population of surface sediments from northern Bering Sea and western Arctic Ocean: implications for provenance and depositional mechanisms. Advances in Polar Science, 31(3): 192–204. doi: 10.13679/j.advps.2020.0015
    [66]
    Wary M, Eynaud F, Rossignol L, et al. 2016. Norwegian Sea warm pulses during Dansgaard-Oeschger stadials: Zooming in on these anomalies over the 35–41 ka cal BP interval and their impacts on proximal European ice-sheet dynamics. Quaternary Science Reviews, 151: 255–272. doi: 10.1016/j.quascirev.2016.09.011
    [67]
    Xiao Jule, Chang Zhigang, Fan Jiawei, et al. 2012. The link between grain-size components and depositional processes in a modern clastic lake. Sedimentology, 59(3): 1050–1062. doi: 10.1111/j.1365-3091.2011.01294.x
    [68]
    Xiao Xiaotong, Zhao Meixun, Knudsen K L, et al. 2017. Deglacial and Holocene sea–ice variability north of Iceland and response to ocean circulation changes. Earth and Planetary Science Letters, 472: 14–24. doi: 10.1016/j.jpgl.2017.05.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (761) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return