Citation: | Lisheng Wu, Wenxin Zhuang, Qiaohong Liu, Rui Wang, Yuan Li, Longshan Lin, Shufang Liu, Shaoxiong Ding. Pilot study to reconstruct life history of Diaphus thiollierei from the Arabian Sea by otolith microstructure and microchemistry[J]. Acta Oceanologica Sinica, 2024, 43(12): 75-84. doi: 10.1007/s13131-024-2307-x |
Alhossaini M, Pitcher T J. 1988. The relation between daily rings, body growth and environmental factors in plaice, Pleuronectes platessa L. , juvenile otoliths. Journal of Fish Biology, 33(3): 409–418
|
Beamish R J, Fournier D A. 1981. A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences, 38: 982–983, doi: 10.1139/f81-132
|
Braga A C, Costa P A S, Nunan G W. 2008. First record of the firebrow lanternfish Diaphus adenomus (Myctophiformes: Myctophidae) from the South Atlantic. Journal of Fish Biology, 73(1): 296–301, doi: 10.1111/j.1095-8649.2008.01915.x
|
Brown R J, Severin K P. 2009. Otolith chemistry analyses indicate that water Sr: Ca is the primary factor influencing otolith Sr: Ca for freshwater and diadromous fish but not for marine fish. Canadian Journal of Fisheries and Aquatic Sciences, 66(10): 1790–1808, doi: 10.1139/F09-112
|
Caiger P E, Lefebve L S, Llopiz J K. 2021. Growth and reproduction in mesopelagic fishes: a literature synthesis. ICES Journal of Marine Science, 78(3): 765–781, doi: 10.1093/icesjms/fsaa247
|
Campana S E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188: 263–297, doi: 10.3354/meps188263
|
Campana S E. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59(2): 197–242, doi: 10.1111/j.1095-8649.2001.tb00127.x
|
Catul V, Gauns M, Karuppasamy P K. 2011. A review on mesopelagic fishes belonging to family Myctophidae. Reviews in Fish Biology and Fisheries, 21(3): 339–354, doi: 10.1007/s11160-010-9176-4
|
Chen Yong, Mello L G S. 1999. Growth and maturation of cod (Gadus morhua) of different year classes in the Northwest Atlantic, NAFO subdivision 3Ps. Fisheries Research, 42(1–2): 87–101, doi: 10.1016/S0165-7836(99)00036-3
|
Duan Mi, Ashford J R, Bestley S, et al. 2021. Otolith chemistry of Electrona antarctica suggests a potential population marker distinguishing the southern Kerguelen Plateau from the eastward−flowing Antarctic Circumpolar Current. Limnology and Oceanography, 66(2): 405–421, doi: 10.1002/lno.11612
|
Eduardo L N, Bertrand A, Mincarone M M, et al. 2021. Distribution, vertical migration, and trophic ecology of lanternfishes (Myctophidae) in the Southwestern Tropical Atlantic. Progress in Oceanography, 199: 102695, doi: 10.1016/j.pocean.2021.102695
|
Elsdon T S, Gillanders B M. 2002. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences, 59(11): 1796–1808, doi: 10.1139/f02-154
|
Flynn A J, Paxton J R. 2012. Spawning aggregation of the lanternfish Diaphus danae (family Myctophidae) in the north-western Coral Sea and associations with tuna aggregations. Marine and Freshwater Research, 63(12): 1255–1271, doi: 10.1071/MF12185
|
Fowler A J, Campana S E, Thorrold S R, et al. 1995. Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Canadian Journal of Fisheries and Aquatic Sciences, 52(7): 1431–1441, doi: 10.1139/f95-138
|
Gartner J V Jr. 1991. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico: I. Morphological and microstructural analysis of sagittal otoliths. Marine Biology, 111(1): 11–20, doi: 10.1007/BF01986339
|
Gjøsaeter J. 1984. Mesopelagic fish, a large potential resource in the Arabian Sea. Deep-Sea Research Part A: Oceanographic Research Papers, 31(6–8): 1019–1035, doi: 10.1016/0198-0149(84)90054-2
|
Greely T M, Gartner J V Jr, Torres J J. 1999. Age and growth of Electrona antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Marine Biology, 133(1): 145–158, doi: 10.1007/s002270050453
|
Hayashi A, Kawaguchi K, Watanabe H, et al. 2001. Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum (Pisces: Myctophidae). Fisheries Science, 67(5): 811–817, doi: 10.1046/j.1444-2906.2001.00327.x
|
Izzo C, Reis-Santos P, Gillanders B M. 2018. Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation. Fish and Fisheries, 19(3): 441–454, doi: 10.1111/faf.12264
|
Karuppasamy P K, George S, Menon N G. 2008. Length-weight relationship of Benthosema pterotum (myctophid) in the deep scattering layer (DSL) of the eastern Arabian Sea. Indian Journal of Fisheries, 55(4): 301–303
|
Liu Hongbo, Jiang Tao, Yang Jian. 2018. Unravelling habitat use of Coilia nasus from the Rokkaku River and Chikugo River estuaries of Japan by otolith strontium and calcium. Acta Oceanologica Sinica, 37(6): 52–60, doi: 10.1007/s13131-018-1190-8
|
Lombarte A, Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environmental Biology of Fishes, 37(3): 297–306, doi: 10.1007/BF00004637
|
Martin G B, Thorrold S R. 2005. Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series, 293: 223–232, doi: 10.3354/meps293223
|
Miller J A. 2011. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology, 405(1–2): 42–52, doi: 10.1016/j.jembe.2011.05.017
|
Milligan R J, Sutton T T. 2020. Dispersion overrides environmental variability as a primary driver of the horizontal assemblage structure of the mesopelagic fish family Myctophidae in the Northern Gulf of Mexico. Frontiers in Marine Science, 7: 15, doi: 10.3389/fmars.2020.00015
|
Moku M, Hayashi A, Mori K, et al. 2005. Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender-type spp. Journal of Fish Biology, 67(5): 1481–1485, doi: 10.1111/j.0022-1112.2005.00824.x
|
Moku M, Ishimaru K, Kawaguchi K. 2001. Growth of larval and juvenile Diaphus theta (Pisces: Myctophidae) in the transitional waters of the western North Pacific. Ichthyological Research, 48(4): 385–390, doi: 10.1007/s10228-001-8162-1
|
Pakhomov E A, Perissinotto R, McQuaid C D. 1996. Prey composition and daily rations of myctophid fishes in the Southern Ocean. Marine Ecology Progress Series, 134: 1–14, doi: 10.3354/meps134001
|
Pawson M G. 1990. Using otolith weight to age fish. Journal of Fish Biology, 36(4): 521–531, doi: 10.1111/j.1095-8649.1990.tb03554.x
|
Petursdottir G, Begg G A, Marteinsdottir G. 2006. Discrimination between Icelandic cod (Gadus morhua L. ) populations from adjacent spawning areas based on otolith growth and shape. Fisheries Research, 80(2–3): 182–189, doi: 10.1016/j.fishres.2006.05.002
|
Pilling G M, Grandcourt E M, Kirkwood G P. 2003. The utility of otolith weight as a predictor of age in the emperor Lethrinus mahsena and other tropical fish species. Fisheries Research, 60(2–3): 493–506, doi: 10.1016/S0165-7836(02)00087-5
|
Robinson C, Steinberg D K, Anderson T R, et al. 2010. Mesopelagic zone ecology and biogeochemistry—a synthesis. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(16): 1504–1518, doi: 10.1016/j.dsr2.2010.02.018
|
Sassa C, Kawaguchi K, Hirota Y, et al. 2004. Distribution patterns of larval myctophid fish assemblages in the subtropical-tropical waters of the western North Pacific. Fisheries Oceanography, 13(4): 267–282, doi: 10.1111/j.1365-2419.2004.00289.x
|
Schaafsma F L, David C L, Kohlbach D, et al. 2022. Allometric relationships of ecologically important Antarctic and Arctic zooplankton and fish species. Polar Biology, 45(2): 203–224, doi: 10.1007/s00300-021-02984-4
|
Sebastine M. 2014. Population characteristics and taxonomy of lantern fishes of genus Diaphus (Family Myctophidae) off south west coast of India [dissertation]. Cochin: Cochin University of Science and Technology
|
Sebastine M, Bineesh K K, Abdussamad E M, et al. 2013. Myctophid fishery along the Kerala coast with emphasis on population characteristics and biology of the headlight fish, Diaphus watasei Jordan & Starks, 1904. Indian Journal of Fisheries, 60(4): 7–11
|
Secor D H, Rooker J R. 2000. Is otolith strontium a useful scalar of life cycles in estuarine fishes?. Fisheries Research, 46(1–3): 359–371, doi: 10.1016/S0165-7836(00)00159-4
|
Shotton R. 1997. Lanternfishes: a potential fishery in the Northern Arabian Sea?. In: FAO. Review of the State of World Fishery Resources: Marine Fisheries. Rome: FAO Fisheries Circular No. 920 FIRM/C. 920, http://www.fao.org/docrep/003/w4248e/w4248e34.htm
|
Smith M K. 1992. Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus. Canadian Journal of Fisheries and Aquatic Sciences, 49(4): 795–804, doi: 10.1139/f92-090
|
Soeth M, Spach H L, Daros F A, et al. 2020. Use of otolith elemental signatures to unravel lifetime movement patterns of Atlantic spadefish, Chaetodipterus faber, in the Southwest Atlantic Ocean. Journal of Sea Research, 158: 101873, doi: 10.1016/j.seares.2020.101873
|
Sturrock A M, Hunter E, Milton J A, et al. 2015. Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution, 6(7): 806–816, doi: 10.1111/2041-210X.12381
|
Sun Peng, Chen Qi, Fu Caihong, et al. 2020. Daily growth of young-of-the-year largehead hairtail (Trichiurus japonicus) in relation to environmental variables in the East China Sea. Journal of Marine Systems, 201: 103243, doi: 10.1016/j.jmarsys.2019.103243
|
Suthers I M. 1996. Spatial variability of recent otolith growth and RNA indices in pelagic juvenile Diaphus kapalae (Myctophidae): an effect of flow disturbance near an island?. Marine & Freshwater Research, 47(2): 273–282
|
Taddese F, Reid M R, Closs G P. 2019. Direct relationship between water and otolith chemistry in juvenile estuarine triplefin Forsterygion nigripenne. Fisheries Research, 211: 32–39, doi: 10.1016/j.fishres.2018.11.002
|
Taubert B D, Coble D W. 1977. Daily rings in otoliths of three species of Lepomis and Tilapia mossambica. Journal of the Fisheries Research Board of Canada, 34(3): 332–340, doi: 10.1139/f77-054
|
Thorson J T, Simpfendorfer C A. 2009. Gear selectivity and sample size effects on growth curve selection in shark age and growth studies. Fisheries Research, 98(1–3): 75–84, doi: 10.1016/j.fishres.2009.03.016
|
Thresher R E. 1999. Elemental composition of otoliths as a stock delineator in fishes. Fisheries Research, 43(1–3): 165–204, doi: 10.1016/S0165-7836(99)00072-7
|
Tian Han, Jiang Yane, Zhang Jun, et al. 2022. Age and growth of Diaphus brachycephalus in the South China Sea using sagittal otolith microstructure. Fishes, 7(4): 169, doi: 10.3390/fishes7040169
|
Walther B D, Thorrold S R. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series, 311: 125–130, doi: 10.3354/meps311125
|
Wang Yan, Zhang Jun, Chen Zuozhi, et al. 2019. Age and growth of Myctophum asperum in the South China Sea based on otolith microstructure analysis. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 167: 121–127, doi: 10.1016/j.dsr2.2018.07.004
|
Woodcock S H, Munro A R, Crook D A, et al. 2012. Incorporation of magnesium into fish otoliths: determining contribution from water and diet. Geochimica et Cosmochimica Acta, 94: 12–21, doi: 10.1016/j.gca.2012.07.003
|
Wright P J, Talbot C, Thorpe J E. 1992. Otolith calcification in Atlantic salmon parr, Salmo salar L. and its relation to photoperiod and calcium metabolism. Journal of Fish Biology, 40(5): 779–790, doi: 10.1111/j.1095-8649.1992.tb02624.x
|
Xiong Ying, Liu Hongbo, Jiang Tao, et al. 2015. Investigation on otolith microchemistry of wild Pampus argenteus and Miichthys miiuyin the southern Yellow Sea, China. Haiyang Xuebao (in Chinese), 37(2): 36–43
|
Xiong Ying, Yang Jian, Jiang Tao, et al. 2021. Temporal stability in the otolith Sr: Ca ratio of the yellow croaker, Larimichthys polyactis (Actinopterygii, Perciformes, Sciaenidae), from the southern Yellow Sea. Acta Ichthyologica et Piscatoria, 51(1): 59–65, doi: 10.3897/aiep.51.63245
|
Xuan Zhongya, Jiang Tao, Liu Hongbo, et al. 2023. Otolith microchemical evidence revealing multiple spawning site origination of the anadromous tapertail anchovy (Coilia nasus) in the Changjiang (Yangtze) River Estuary. Acta Oceanologica Sinica, 42(1): 120–130, doi: 10.1007/s13131-022-2135-9
|
Yang Jian, Jiang Tao, Liu Hongbo. 2011. Are there habitat salinity markers of the Sr: Ca ratio in the otolith of wild diadromous fishes? A literature survey. Ichthyological Research, 58(3): 291–294, doi: 10.1007/s10228-011-0220-8
|
Zhang Jun, Wang Yan, Chen Zuozhi, et al. 2021. Age and growth of Ceratoscopelus warmingii (Myctophidae) in the South China Sea based on sagittal otolith microstructure. Marine Biology Research, 17(7–8): 733–743, doi: 10.1080/17451000.2021.2015390
|
Zhuang Wenxin, Wu Lisheng, Liu Qiaohong, et al. 2023. Interspecies differences in the otolith morphology of three Diaphus species based on landmark method. Haiyang Xuebao (in Chinese), 45(9): 119–127
|