Pilot study to reconstruct life history of Diaphus thiollierei from the Arabian Sea by otolith microstructure and microchemistry

Lisheng Wu Wenxin Zhuang Qiaohong Liu Rui Wang Yuan Li Longshan Lin Shufang Liu Shaoxiong Ding

Lisheng Wu, Wenxin Zhuang, Qiaohong Liu, Rui Wang, Yuan Li, Longshan Lin, Shufang Liu, Shaoxiong Ding. Pilot study to reconstruct life history of Diaphus thiollierei from the Arabian Sea by otolith microstructure and microchemistry[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2307-x
Citation: Lisheng Wu, Wenxin Zhuang, Qiaohong Liu, Rui Wang, Yuan Li, Longshan Lin, Shufang Liu, Shaoxiong Ding. Pilot study to reconstruct life history of Diaphus thiollierei from the Arabian Sea by otolith microstructure and microchemistry[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2307-x

doi: 10.1007/s13131-024-2307-x

Pilot study to reconstruct life history of Diaphus thiollierei from the Arabian Sea by otolith microstructure and microchemistry

Funds: Th fund from the Laoshan Laboratory under contract No. LSK202203802; the National Programme on Global Change and Air-Sea Interaction under contract No. GASI-02-SCS-YD sum/spr/aut.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Sampling area in the Arabian Sea.

    Figure  2.  Light micrographs of sagittal otolith from a female Diaphus thiollierei with 55.4 mm SL and 139 d age. a. Longitudinal section in which dark and light bands suggesting daily increments; b. the same otolith showing schematic diagram of laser ablation for chemistry analyses and six life history stages: primordium (nucleus, N), larval (L), postlarval (PL), postmetamorphic I (PM I), postmetamorphic II (PM II), and postmetamorphic III (PM III) stages. The red circles represent spot raster for LA-ICP-MS.

    Figure  3.  Frequency distributions of daily age (a) and hatch date (b) of Diaphus thiollierei caught in the Arabian Sea from October to November 2020.

    Figure  4.  The von Bertalanffy growth function fitted to the relationship between daily age and standard body length. Blue for male and red for female.

    Figure  5.  The ratios of each otolith element to Ca concentration along the line transects from the core (0 μm) to the edge of the sagittal plane of D. thiollierei. The gray dots indicate the ratio point value of each otolith element to Ca, while the solid black line and blue block indicate the median and average values of all specimens, respectively. The vertical dashed lines separate the six life history stages. N, nucleus (primordium); L, larval; PL, postlarval; PM I, postmetamorphic I; PM II, postmetamorphic II; and PM III, postmetamorphic III stages.

    Table  1.   Annulus width, number of LA-ICP-MS points, and estimated ages in day for six life stages

    Life stage Annulus width/μm Number of LA-ICP-MS points Estimated daily age/d
    Primordium = Nucleus (N) about 50 1
    Larval (L) about 150 3 about 25−30 (including N and L)
    Postlarval (PL) about 200 4 about 30−40
    Postmetamorphic I (PM I) about 300 6 about 40−70
    Postmetamorphic II (PM II) about 250/200 5/4 about 70−100
    Postmetamorphic III (PM III) >250 >5 about 100 to >130
    下载: 导出CSV

    Table  2.   Median ratios of element to calcium in sagittal otolith of D. thiollierei during six life stages

    Life stage Li to Ca Mg to Ca Sr to Ca Ba to Ca
    N 0.00947 a 0.339 ab 2.73 a 0.00137 ab
    L 0.00898 a 0.276 a 2.50 a 0.00114 a
    PL 0.00718 a 0.265 a 1.95 b 0.00103 a
    PM I 0.00565 b 0.150 b 1.81 b 0.00130 ab
    PM II 0.00410 bc 0.111 c 1.86 b 0.00183 b
    PM III 0.00365 c 0.081 c 1.82 b 0.00167 b
    Note: The different letters indicate significant differences (p<0.05, Kruskal-Wallis test with all pairwise comparisons).
    下载: 导出CSV

    Table  3.   Spearman’s Correlation coefficients between ratios of element to calcium

    Mg to Ca Sr to Ca Ba to Ca
    Li to Ca 0.855** 0.533** −0.625**
    Mg to Ca 0.535** −0.523**
    Sr to Ca −0.223
    Note: ** Correlation is significant at the 0.01 level (2-tailed).
    下载: 导出CSV
  • Alhossaini M, Pitcher T J. 1988. The relation between daily rings, body growth and environmental factors in plaice, Pleuronectes platessa L. , juvenile otoliths. Journal of Fish Biology, 33(3): 409–418
    Beamish R J, Fournier D A. 1981. A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences, 38: 982–983, doi: 10.1139/f81-132
    Braga A C, Costa P A S, Nunan G W. 2008. First record of the firebrow lanternfish Diaphus adenomus (Myctophiformes: Myctophidae) from the South Atlantic. Journal of Fish Biology, 73(1): 296–301, doi: 10.1111/j.1095-8649.2008.01915.x
    Brown R J, Severin K P. 2009. Otolith chemistry analyses indicate that water Sr: Ca is the primary factor influencing otolith Sr: Ca for freshwater and diadromous fish but not for marine fish. Canadian Journal of Fisheries and Aquatic Sciences, 66(10): 1790–1808, doi: 10.1139/F09-112
    Caiger P E, Lefebve L S, Llopiz J K. 2021. Growth and reproduction in mesopelagic fishes: a literature synthesis. ICES Journal of Marine Science, 78(3): 765–781, doi: 10.1093/icesjms/fsaa247
    Campana S E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188: 263–297, doi: 10.3354/meps188263
    Campana S E. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59(2): 197–242, doi: 10.1111/j.1095-8649.2001.tb00127.x
    Catul V, Gauns M, Karuppasamy P K. 2011. A review on mesopelagic fishes belonging to family Myctophidae. Reviews in Fish Biology and Fisheries, 21(3): 339–354, doi: 10.1007/s11160-010-9176-4
    Chen Yong, Mello L G S. 1999. Growth and maturation of cod (Gadus morhua) of different year classes in the Northwest Atlantic, NAFO subdivision 3Ps. Fisheries Research, 42(1–2): 87–101, doi: 10.1016/S0165-7836(99)00036-3
    Duan Mi, Ashford J R, Bestley S, et al. 2021. Otolith chemistry of Electrona antarctica suggests a potential population marker distinguishing the southern Kerguelen Plateau from the eastward−flowing Antarctic Circumpolar Current. Limnology and Oceanography, 66(2): 405–421, doi: 10.1002/lno.11612
    Eduardo L N, Bertrand A, Mincarone M M, et al. 2021. Distribution, vertical migration, and trophic ecology of lanternfishes (Myctophidae) in the Southwestern Tropical Atlantic. Progress in Oceanography, 199: 102695, doi: 10.1016/j.pocean.2021.102695
    Elsdon T S, Gillanders B M. 2002. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences, 59(11): 1796–1808, doi: 10.1139/f02-154
    Flynn A J, Paxton J R. 2012. Spawning aggregation of the lanternfish Diaphus danae (family Myctophidae) in the north-western Coral Sea and associations with tuna aggregations. Marine and Freshwater Research, 63(12): 1255–1271, doi: 10.1071/MF12185
    Fowler A J, Campana S E, Thorrold S R, et al. 1995. Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Canadian Journal of Fisheries and Aquatic Sciences, 52(7): 1431–1441, doi: 10.1139/f95-138
    Gartner J V Jr. 1991. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico: I. Morphological and microstructural analysis of sagittal otoliths. Marine Biology, 111(1): 11–20, doi: 10.1007/BF01986339
    Gjøsaeter J. 1984. Mesopelagic fish, a large potential resource in the Arabian Sea. Deep-Sea Research Part A: Oceanographic Research Papers, 31(6–8): 1019–1035, doi: 10.1016/0198-0149(84)90054-2
    Greely T M, Gartner J V Jr, Torres J J. 1999. Age and growth of Electrona antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Marine Biology, 133(1): 145–158, doi: 10.1007/s002270050453
    Hayashi A, Kawaguchi K, Watanabe H, et al. 2001. Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum (Pisces: Myctophidae). Fisheries Science, 67(5): 811–817, doi: 10.1046/j.1444-2906.2001.00327.x
    Izzo C, Reis-Santos P, Gillanders B M. 2018. Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation. Fish and Fisheries, 19(3): 441–454, doi: 10.1111/faf.12264
    Karuppasamy P K, George S, Menon N G. 2008. Length-weight relationship of Benthosema pterotum (myctophid) in the deep scattering layer (DSL) of the eastern Arabian Sea. Indian Journal of Fisheries, 55(4): 301–303
    Liu Hongbo, Jiang Tao, Yang Jian. 2018. Unravelling habitat use of Coilia nasus from the Rokkaku River and Chikugo River estuaries of Japan by otolith strontium and calcium. Acta Oceanologica Sinica, 37(6): 52–60, doi: 10.1007/s13131-018-1190-8
    Lombarte A, Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environmental Biology of Fishes, 37(3): 297–306, doi: 10.1007/BF00004637
    Martin G B, Thorrold S R. 2005. Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series, 293: 223–232, doi: 10.3354/meps293223
    Miller J A. 2011. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology, 405(1–2): 42–52, doi: 10.1016/j.jembe.2011.05.017
    Milligan R J, Sutton T T. 2020. Dispersion overrides environmental variability as a primary driver of the horizontal assemblage structure of the mesopelagic fish family Myctophidae in the Northern Gulf of Mexico. Frontiers in Marine Science, 7: 15, doi: 10.3389/fmars.2020.00015
    Moku M, Hayashi A, Mori K, et al. 2005. Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender-type spp. Journal of Fish Biology, 67(5): 1481–1485, doi: 10.1111/j.0022-1112.2005.00824.x
    Moku M, Ishimaru K, Kawaguchi K. 2001. Growth of larval and juvenile Diaphus theta (Pisces: Myctophidae) in the transitional waters of the western North Pacific. Ichthyological Research, 48(4): 385–390, doi: 10.1007/s10228-001-8162-1
    Pakhomov E A, Perissinotto R, McQuaid C D. 1996. Prey composition and daily rations of myctophid fishes in the Southern Ocean. Marine Ecology Progress Series, 134: 1–14, doi: 10.3354/meps134001
    Pawson M G. 1990. Using otolith weight to age fish. Journal of Fish Biology, 36(4): 521–531, doi: 10.1111/j.1095-8649.1990.tb03554.x
    Petursdottir G, Begg G A, Marteinsdottir G. 2006. Discrimination between Icelandic cod (Gadus morhua L. ) populations from adjacent spawning areas based on otolith growth and shape. Fisheries Research, 80(2–3): 182–189, doi: 10.1016/j.fishres.2006.05.002
    Pilling G M, Grandcourt E M, Kirkwood G P. 2003. The utility of otolith weight as a predictor of age in the emperor Lethrinus mahsena and other tropical fish species. Fisheries Research, 60(2–3): 493–506, doi: 10.1016/S0165-7836(02)00087-5
    Robinson C, Steinberg D K, Anderson T R, et al. 2010. Mesopelagic zone ecology and biogeochemistry—a synthesis. Deep-Sea Research Part II: Topical Studies in Oceanography, 57(16): 1504–1518, doi: 10.1016/j.dsr2.2010.02.018
    Sassa C, Kawaguchi K, Hirota Y, et al. 2004. Distribution patterns of larval myctophid fish assemblages in the subtropical-tropical waters of the western North Pacific. Fisheries Oceanography, 13(4): 267–282, doi: 10.1111/j.1365-2419.2004.00289.x
    Schaafsma F L, David C L, Kohlbach D, et al. 2022. Allometric relationships of ecologically important Antarctic and Arctic zooplankton and fish species. Polar Biology, 45(2): 203–224, doi: 10.1007/s00300-021-02984-4
    Sebastine M. 2014. Population characteristics and taxonomy of lantern fishes of genus Diaphus (Family Myctophidae) off south west coast of India [dissertation]. Cochin: Cochin University of Science and Technology
    Sebastine M, Bineesh K K, Abdussamad E M, et al. 2013. Myctophid fishery along the Kerala coast with emphasis on population characteristics and biology of the headlight fish, Diaphus watasei Jordan & Starks, 1904. Indian Journal of Fisheries, 60(4): 7–11
    Secor D H, Rooker J R. 2000. Is otolith strontium a useful scalar of life cycles in estuarine fishes?. Fisheries Research, 46(1–3): 359–371, doi: 10.1016/S0165-7836(00)00159-4
    Shotton R. 1997. Lanternfishes: a potential fishery in the Northern Arabian Sea?. In: FAO. Review of the State of World Fishery Resources: Marine Fisheries. Rome: FAO Fisheries Circular No. 920 FIRM/C. 920, http://www.fao.org/docrep/003/w4248e/w4248e34.htm
    Smith M K. 1992. Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus. Canadian Journal of Fisheries and Aquatic Sciences, 49(4): 795–804, doi: 10.1139/f92-090
    Soeth M, Spach H L, Daros F A, et al. 2020. Use of otolith elemental signatures to unravel lifetime movement patterns of Atlantic spadefish, Chaetodipterus faber, in the Southwest Atlantic Ocean. Journal of Sea Research, 158: 101873, doi: 10.1016/j.seares.2020.101873
    Sturrock A M, Hunter E, Milton J A, et al. 2015. Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution, 6(7): 806–816, doi: 10.1111/2041-210X.12381
    Sun Peng, Chen Qi, Fu Caihong, et al. 2020. Daily growth of young-of-the-year largehead hairtail (Trichiurus japonicus) in relation to environmental variables in the East China Sea. Journal of Marine Systems, 201: 103243, doi: 10.1016/j.jmarsys.2019.103243
    Suthers I M. 1996. Spatial variability of recent otolith growth and RNA indices in pelagic juvenile Diaphus kapalae (Myctophidae): an effect of flow disturbance near an island?. Marine & Freshwater Research, 47(2): 273–282
    Taddese F, Reid M R, Closs G P. 2019. Direct relationship between water and otolith chemistry in juvenile estuarine triplefin Forsterygion nigripenne. Fisheries Research, 211: 32–39, doi: 10.1016/j.fishres.2018.11.002
    Taubert B D, Coble D W. 1977. Daily rings in otoliths of three species of Lepomis and Tilapia mossambica. Journal of the Fisheries Research Board of Canada, 34(3): 332–340, doi: 10.1139/f77-054
    Thorson J T, Simpfendorfer C A. 2009. Gear selectivity and sample size effects on growth curve selection in shark age and growth studies. Fisheries Research, 98(1–3): 75–84, doi: 10.1016/j.fishres.2009.03.016
    Thresher R E. 1999. Elemental composition of otoliths as a stock delineator in fishes. Fisheries Research, 43(1–3): 165–204, doi: 10.1016/S0165-7836(99)00072-7
    Tian Han, Jiang Yane, Zhang Jun, et al. 2022. Age and growth of Diaphus brachycephalus in the South China Sea using sagittal otolith microstructure. Fishes, 7(4): 169, doi: 10.3390/fishes7040169
    Walther B D, Thorrold S R. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series, 311: 125–130, doi: 10.3354/meps311125
    Wang Yan, Zhang Jun, Chen Zuozhi, et al. 2019. Age and growth of Myctophum asperum in the South China Sea based on otolith microstructure analysis. Deep-Sea Research Part II: Topical Studies in Oceanography, 167: 121–127, doi: 10.1016/j.dsr2.2018.07.004
    Woodcock S H, Munro A R, Crook D A, et al. 2012. Incorporation of magnesium into fish otoliths: determining contribution from water and diet. Geochimica et Cosmochimica Acta, 94: 12–21, doi: 10.1016/j.gca.2012.07.003
    Wright P J, Talbot C, Thorpe J E. 1992. Otolith calcification in Atlantic salmon parr, Salmo salar L. and its relation to photoperiod and calcium metabolism. Journal of Fish Biology, 40(5): 779–790, doi: 10.1111/j.1095-8649.1992.tb02624.x
    Xiong Ying, Liu Hongbo, Jiang Tao, et al. 2015. Investigation on otolith microchemistry of wild Pampus argenteus and Miichthys miiuyin the southern Yellow Sea, China. Haiyang Xuebao (in Chinese), 37(2): 36–43
    Xiong Ying, Yang Jian, Jiang Tao, et al. 2021. Temporal stability in the otolith Sr: Ca ratio of the yellow croaker, Larimichthys polyactis (Actinopterygii, Perciformes, Sciaenidae), from the southern Yellow Sea. Acta Ichthyologica et Piscatoria, 51(1): 59–65, doi: 10.3897/aiep.51.63245
    Xuan Zhongya, Jiang Tao, Liu Hongbo, et al. 2023. Otolith microchemical evidence revealing multiple spawning site origination of the anadromous tapertail anchovy (Coilia nasus) in the Changjiang (Yangtze) River Estuary. Acta Oceanologica Sinica, 42(1): 120–130, doi: 10.1007/s13131-022-2135-9
    Yang Jian, Jiang Tao, Liu Hongbo. 2011. Are there habitat salinity markers of the Sr: Ca ratio in the otolith of wild diadromous fishes? A literature survey. Ichthyological Research, 58(3): 291–294, doi: 10.1007/s10228-011-0220-8
    Zhang Jun, Wang Yan, Chen Zuozhi, et al. 2021. Age and growth of Ceratoscopelus warmingii (Myctophidae) in the South China Sea based on sagittal otolith microstructure. Marine Biology Research, 17(7–8): 733–743, doi: 10.1080/17451000.2021.2015390
    Zhuang Wenxin, Wu Lisheng, Liu Qiaohong, et al. 2023. Interspecies differences in the otolith morphology of three Diaphus species based on landmark method. Haiyang Xuebao (in Chinese), 45(9): 119–127
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 录用日期:  2024-03-29
  • 网络出版日期:  2024-12-20

目录

    /

    返回文章
    返回