SU Tonghua, XUE Feng, SUN Hongchuan, ZHOU Guangqing. The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences[J]. Acta Oceanologica Sinica, 2015, 34(1): 55-65. doi: 10.1007/s13131-015-0596-9
Citation: SU Tonghua, XUE Feng, SUN Hongchuan, ZHOU Guangqing. The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences[J]. Acta Oceanologica Sinica, 2015, 34(1): 55-65. doi: 10.1007/s13131-015-0596-9

The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences

doi: 10.1007/s13131-015-0596-9
  • Received Date: 2014-04-07
  • Rev Recd Date: 2014-09-10
  • On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the El Niño-Southern Oscillation (ENSO) cycle is evaluated, including the onset, development and decay of the ENSO. It is shown that, the model can reasonably simulate the annual cycle and interannual variability of sea surface temperature (SST) in the tropical Pacific, as well as the seasonal phase-locking of the ENSO. The model also captures two prerequisites for the El Niño onset, i.e., a westerly anomaly and a warm SST anomaly in the equatorial western Pacific. Owing to too strong forcing from an extratropical meridional wind, however, the westerly anomaly in this region is largely overestimated. Moreover, the simulated thermocline is much shallower with a weaker slope. As a result, the warm SST anomaly from the western Pacific propagates eastward more quickly, leading to a faster development of an El Niño. during the decay stage, owing to a stronger El Niño in the model, the secondary Gill-type response of the tropical atmosphere to the eastern Pacific warming is much stronger, thereby resulting in a persistent easterly anomaly in the western Pacific. Meanwhile, a cold anomaly in the warm pool appears as a result of a lifted thermocline via Ekman pumping. Finally, an El Niño decays into a La Niña through their interactions. In addition, the shorter period and larger amplitude of the ENSO in the model can be attributed to a shallower thermocline in the equatorial Pacific, which speeds up the zonal redistribution of a heat content in the upper ocean.
  • loading
  • AchutaRao K, Sperber K R. 2006. ENSO simulation in coupled ocean atmosphere models: are the current models better? Climate dyn, 27(1): 1-15
    An S I, Jin F F. 2004. Nonlinearity and asymmetry of ENSO. J Climate, 17(12): 2399-2412
    Bellenger H, Guilyardi E, Leloup J, et al. 2014. ENSO representation in climate models: from CMIP3 to CMIP5. Climate dyn, 42(7-8): 1999-2018
    Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev, 97(3): 163-172
    Briegleb B P, Bitz C M, Hunke E C, et al. 2004. Scientific description of the sea ice component in the community climate system model, version three. NCAR Technical Note NCAR/TN-463+STR, Colorado: National Center for Atmospheric Research, doi: 10.5065/d6HH6H1P.
    Carton J A, Chepurin G, Cao X, et al. 2000. A simple ocean data assimilation analysis of the global upper ocean 1950-1995, Part 1: methodology. J Phys Oceanogr, 30(2): 294-309
    dickinson R E, Oleson K W, Bonan G, et al. 2006. The community land model and its climate statistics as a component of the community climate system model. J Climate, 19(11): 2302-2324
    Fedorov A V, Philander S G. 2001. A stability analysis of tropical ocean-atmosphere interactions: Bridging measurements and theory for El Niño. J Climate, 14(14): 3086-3101
    Guilyardi E. 2006. El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate dyn, 26(4): 329-348
    Guilyardi E, Wittenberg A, Fedorov A, et al. 2009. Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Amer Meteor Soc, 90(3): 325-340
    Ingleby B, Huddleston M. 2007. Quality control of ocean temperature and salinity profiles-Historical and real-time data. J Marine Syst, 65(1-4): 158-175
    Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 54(7): 811-829
    Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP-dOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc, 83(11): 1631-1643
    Larkin N K, Harrison d E. 2002. ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Climate, 15(10): 1118-1140
    Latif M, Sperber K, Arblaster J, et al. 2001. ENSIP: the El Niño simulation intercomparison project. Climate dyn, 18(3-4): 255-276
    Leloup J, Lengaigne M, Boulanger J P. 2008. Twentieth century ENSO characteristics in the IPCC database. Climate dyn, 30(2-3): 277-291
    Li Chongyin, Mu Mingquan. 1999. El Niño occurrence and sub-surface ocean temperature anomalies in the Pacific warm pool. Chinese Journal of Atmospheric Sciences (in Chinese), 23(5): 513-521
    Liebmann B, Smith C A. 1996. description of a complete (interpolated) outgoing longwave radiation dataset. Bull Amer Meteor Soc, 77: 1275-1277
    Liu Changzheng, Xue Feng. 2008. The persistent maintenance of the strong westerly anomalies over the equatorial western Pacific during the onset and development of ENSO. Climatic and Environmental Research (in Chinese), 13(2): 161-170
    Liu Changzheng, Xue Feng. 2010a. The decay of El Niño with different intensity. Part I, The decay of the strong El Niño. Chinese Journal of Geophysics, 53(1): 14-25
    Liu Changzheng, Xue Feng. 2010b. The decay of El Niño with different intensity. Part II, The decay of the moderate and relatively-weak El Niño. Chinese Journal of Geophysics, 53(6): 915-925
    Liu Changzheng, Xue Feng. 2012. The abortion of El Niño event in 1993 and its comparison with the typical El Niño event. Climatic and Environmental Research (in Chinese), 17(2): 197-204
    Liu Hailong, Yu Yongqiang, Li Wei, et al. 2004. Manual for LASG/IAP Climate System Ocean Model (LICOM1.0) (in Chinese). Beijing: Science Press, 107
    Philander S G H. 1983. El Niño and Southern Oscillation phenomena. Nature, 302(5906): 295-301
    Philander S G H. 1985. El Niño and La Niña. J Atmos Sci, 42(23): 2652-2662
    Philander S G H, Fedorov A. 2003. Is El Nino sporadic or cyclic? Annu Rev Earth Planet Sci, 31: 579-594
    Picaut J, Masia F, du Penhoat Y. 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277(5326): 663-666
    Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon Wea Rev, 110(5): 354-384
    Rayner N A, Parker d E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res, 108(d14): doi: 10.1029/2002Jd002670
    Suarez M J, Schopf P S. 1988. A delayed action oscillator for ENSO. J Atmos Sci, 45(21): 3283-3287
    Sun Hongchuan, Zhou Guangqing, Zeng Qingcun. 2012. Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component. Chinese Journal of Atmospheric Sciences (in Chinese), 36(2): 215-233
    Trenberth K E. 1997. The definition of El Niño. Bull Amer Meteor Soc, 78(12): 2771-2777
    Weisberg R H, Wang Chunzai. 1997. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett, 24(7): 779-782
    Wu Bo, Li Tim, Zhou Tianjun. 2010. Asymmetry of atmospheric circulation anomalies over the western north Pacific between El Niño and La Niña. J Climate, 23(18): 4807-4822
    Wyrtki K. 1975. El Niño-The dynamic response of the Equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr, 5(4): 572-584
    Xue Feng, He Juanxiong. 2007. The influence of the extratropical atmospheric disturbances on ENSO. Chinese Journal of Geophysics, 50(5): 1130-1138
    Xue Feng, Liu Changzheng. 2008. The influence of moderate ENSO on summer rainfall in eastern China and its comparison with strong ENSO. Chinese Science Bulletin, 53 (5): 791-800
    Yu J Y, Kim S T. 2010. Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett, L15705, doi: 10.1029/2010GL044082
    Zebiak S E, Cane M A. 1987. A model El Niño-Southern Oscillation. Mon Wea Rev, 115(10): 2262-2278
    Zhang He. 2009. development of IAP atmospheric general circulation model version 4.0 and its climate simulations [dissertation]. Beijing: University of Chinese Academy of Sciences, 194
    Zhou Guangqing, Li Chongyin. 1999. Simulation on the relation between the subsurface temperature anomaly in western Pacific and ENSO by using CGCM. Climatic and Environmental Research (in Chinese), 4(4): 346-352
    Zhou Guangqing, Zeng Qingcun, Zhang Ronghua. 1999. An improved air-sea coupled model and its numerical simulation. Progress in Natural Science (in Chinese), 9(6): 542-551
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1343) PDF downloads(1751) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint