Volume 40 Issue 5
May  2021
Turn off MathJax
Article Contents
Zhongyan Shen, Tao Zhang, Jinyao Gao, Chunguo Yang, Qingsheng Guan. Glacial bedforms in the Northwind Abyssal Plain, Chukchi Borderland[J]. Acta Oceanologica Sinica, 2021, 40(5): 114-119. doi: 10.1007/s13131-021-1728-z
Citation: Zhongyan Shen, Tao Zhang, Jinyao Gao, Chunguo Yang, Qingsheng Guan. Glacial bedforms in the Northwind Abyssal Plain, Chukchi Borderland[J]. Acta Oceanologica Sinica, 2021, 40(5): 114-119. doi: 10.1007/s13131-021-1728-z

Glacial bedforms in the Northwind Abyssal Plain, Chukchi Borderland

doi: 10.1007/s13131-021-1728-z
Funds:  The National Natural Science Foundation of China under contract No. 41976079; the Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract No. CHINARE-03-03.
More Information
  • Corresponding author: E-mail: yangchunguo@sio.org.cn
  • Received Date: 2020-04-01
  • Accepted Date: 2020-06-03
  • Available Online: 2021-04-26
  • Publish Date: 2021-05-01
  • A series of sub-parallel linear glacial scours are identified on the crest of the Baoshi Seamount in the Northwind Abyssal Plain by compiling new multibeam data acquired during the 9th Chinese Arctic Research Expedition (CHINARE-Arc9) in 2018 and previously published data. The new data reveal scours that developed at water depths of 850–1 030 m with an orientation of about 75°/255°. The maximum water depth occurs in the southernmost scour and is deeper than that from previous investigations, which showed a maximum scouring depth of about 900 m on the seamount. The topographic and geomorphological characteristics suggest that these scours resulted from erosion by the ice shelf extending from the Chukchi margin and/or Laurentide Ice Sheet that grounded on the crest of the seamount and moved in a NE–SW direction. Other possibilities of their genesis include armadas of large icebergs/multi-keel icebergs calved from the Chukchi Shelf or the Laurentide Ice Sheet. The new data provide new constraints for assessing the extent and volume of the ice sheet in the Chukchi area during glacial maxima.
  • †These authors contributed equally
  • loading
  • [1]
    Anderson J B, Conway H, Bart P J, et al. 2014. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quaternary Science Reviews, 100: 31–54. doi: 10.1016/j.quascirev.2013.08.020
    [2]
    Caress D W, Chayes D N. 2017. MB-System: Mapping the Seafloor. Moss Landing, CA: Monterey Bay Aquariun Research Institute
    [3]
    Donn W L, Ewing M. 1966. A theory of ice ages III. Science, 152(3730): 1706–1712. doi: 10.1126/science.152.3730.1706
    [4]
    Dove D, Polyak L, Coakley B. 2014. Widespread, multi-source glacial erosion on the Chukchi margin, Arctic Ocean. Quaternary Science Reviews, 92: 112–122. doi: 10.1016/j.quascirev.2013.07.016
    [5]
    Dowdeswell J A, Canals M, Jakobsson M, et al. 2016. The variety and distribution of submarine glacial landforms and implications for ice-sheet reconstruction. Geological Society, London, Memoirs, 46: 519–552. doi: 10.1144/M46.183
    [6]
    Dowdeswell J A, Jakobsson M, Hogan K A, et al. 2010. High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin: Implications for ice-sheet grounding and deep-keeled icebergs. Quaternary Science Review, 29(25–26): 3518–3531. doi: 10.1016/j.quascirev.2010.06.002
    [7]
    Ehlers J, Gibbard P L. 2007. The extent and chronology of Cenozoic Global Glaciation. Quaternary International, 164–165: 6–20. doi: 10.1016/j.quaint.2006.10.008
    [8]
    Grantz A, Hart P E, Childers V A. 2011. Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean. Geological Society, London, Memoirs, 35: 771–799. doi: 10.1144/M35.50
    [9]
    Hall J K. 1990. Chukchi borderland. In: Grantz A, Johnson G L, Sweeney J F, eds. The Arctic Ocean region. Boulder: The Geological Society of America, Inc., 337–350, doi: 10.1130/DNAG-GNA-L.337
    [10]
    Hegewald A. 2012. The Chukchi region: Arctic Ocean: tectonic and sedimentary evolution [dissertation]. Bremen: Alfred Wegener Institute-Helmholtz Centre for Polar and Marine Research
    [11]
    Hegewald A, Jokat W. 2013. Relative sea level variations in the Chukchi region-Arctic Ocean-since the late Eocene. Geophysical Research Letters, 40(5): 803–807. doi: 10.1002/grl.50182
    [12]
    Hughes T, Denton G H, Grosswald M G. 1977. Was there a late-würm Arctic Ice Sheet?. Nature, 266(5603): 596–602. doi: 10.1038/266596a0
    [13]
    Ilhan I, Coakley B J. 2018. Meso–Cenozoic evolution of the southwestern Chukchi Borderland, Arctic Ocean. Marine and Petroleum Geology, 95: 100–109. doi: 10.1016/j.marpetgeo.2018.04.014
    [14]
    Jakobsson M. 1999. First high-resolution chirp sonar profiles from the central Arctic Ocean reveal erosion of Lomonosov Ridge sediments. Marine Geology, 158(1–4): 111–123. doi: 10.1016/S0025-3227(98)00186-8
    [15]
    Jakobsson M, Andreassen K, Bjarnadóttir L R, et al. 2014. Arctic Ocean glacial history. Quaternary Science Reviews, 92: 40–67. doi: 10.1016/j.quascirev.2013.07.033
    [16]
    Jakobsson M, Mayer L, Coakley B, et al. 2012. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3. 0. Geophysical Research Letters, 39(12): L12609. doi: 10.1029/2012GL052219
    [17]
    Jakobsson M, Nilsson J, Anderson L, et al. 2016. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nature Communications, 7: 10365. doi: 10.1038/ncomms10365
    [18]
    Jakobsson M, Polyak L, Edwards M, et al. 2008. Glacial geomorphology of the central Arctic Ocean: The Chukchi borderland and the Lomonosov ridge. Earth Surface Processes and Landforms, 33(4): 526–545. doi: 10.1002/esp.1667
    [19]
    King E C, Hindmarsh R C A, Stokes C R. 2009. Formation of mega-scale glacial lineations observed beneath a West Antarctic ice stream. Nature Geoscience, 2(8): 585–588. doi: 10.1038/ngeo581
    [20]
    Kristoffersen Y, Coakley B, Jokat W, et al. 2004. Seabed erosion on the Lomonosov Ridge, central Arctic Ocean: A tale of deep draft icebergs in the Eurasia Basin and the influence of Atlantic water inflow on iceberg motion?. Paleoceanography and Paleoclimatology, 19(3): PA3006. doi: 10.1029/2003PA000985
    [21]
    Lambeck K, Rouby H, Purcell A, et al. 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 111(43): 15296–15303. doi: 10.1073/pnas.1411762111
    [22]
    Mercer J H. 1970. A former ice sheet in the Arctic Ocean?. Palaeogeography, Palaeoclimatology, Palaeoecology, 8(1): 19–27. doi: 10.1016/0031-0182(70)90076-3
    [23]
    Niessen F, Hong J K, Hegewald A, et al. 2013. Repeated Pleistocene glaciation of the East Siberian continental margin. Nature Geoscience, 6(10): 842–846. doi: 10.1038/ngeo1904
    [24]
    Ottesen D, Dowdeswell J A. 2009. An inter–ice-stream glaciated margin: Submarine landforms and a geomorphic model based on marine-geophysical data from Svalbard. GSA Bulletin, 121(11–12): 1647–1665. doi: 10.1130/B26467.1
    [25]
    Polyak L, Darby D A, Bischof J F, et al. 2007. Stratigraphic constraints on late Pleistocene glacial erosion and deglaciation of the Chukchi margin, Arctic Ocean. Quaternary Research, 67(2): 234–245. doi: 10.1016/j.yqres.2006.08.001
    [26]
    Polyak L, Edwards M H, Coakley B J, et al. 2001. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature, 410(6827): 453–457. doi: 10.1038/35068536
    [27]
    Shipp S, Anderson J B, Domack E W. 1999. Seismic signature of the Late Pleistocene fluctuation of the West Antarctic Ice Sheet system in the Ross Sea: a new perspective, Part I. Geological Society of America Bulletin, 111: 1486–1516. doi: 10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2
    [28]
    Stein R, Matthiessen J, Niessen F, et al. 2010. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79(2): 97–121
    [29]
    Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic mapping tools: Improved version released. EOS, 94(45): 409–410. doi: 10.1002/2013EO450001
    [30]
    Wise M G, Dowdeswell J A, Jakobsson M, et al. 2017. Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks. Nature, 550(7677): 506–510. doi: 10.1038/nature24458
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (856) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return