Citation: | Linwei Li, Jinzhou Du, Xilong Wang, Yanling Lao. Distinguishing the main components of submarine groundwater and estimating the corresponding fluxes based on radium tracing method—taking the Maowei Sea for example[J]. Acta Oceanologica Sinica, 2023, 42(8): 1-23. doi: 10.1007/s13131-023-2211-9 |
Anschutz P, Smith T, Mouret A, et al. 2009. Tidal sands as biogeochemical reactors. Estuarine, Coastal and Shelf Science, 84(1): 84–90
|
Boehm A B, Shellenbarger G G, Paytan A. 2004. Groundwater discharge: potential association with fecal indicator bacteria in the surf zone. Environmental Science & Technology, 38(13): 3558–3566
|
Boudreau B P. 1996. The diffusive tortuosity of fine-grained unlithified sediments. Geochimica et Cosmochimica Acta, 60(16): 3139–3142. doi: 10.1016/0016-7037(96)00158-5
|
Burnett W C, Bokuniewicz H, Huettel M, et al. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1–2): 3–33
|
Burnett W C, Taniguchi M, Oberdorfer J. 2001. Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research, 46(2): 109–116. doi: 10.1016/S1385-1101(01)00075-2
|
Canuel E A, Cammer S S, McIntosh H A, et al. 2012. Climate change impacts on the organic carbon cycle at the land-ocean interface. Annual Review of Earth and Planetary Sciences, 40: 685–711. doi: 10.1146/annurev-earth-042711-105511
|
Charette M A, Dulaiova H, Gonneea M E, et al. 2012. GEOTRACES radium isotopes interlaboratory comparison experiment. Limnology and Oceanography: Methods, 10(6): 451–463. doi: 10.4319/lom.2012.10.451
|
Chen Xiaogang. 2019. Submarine groundwater discharge in mangroves, salt marshes, sandy beaches and karst ecosystems of typical coastal zones (in Chinese)[dissertation]. Shanghai: East China Normal University
|
Codification Committee of Gulf Records of China. 1993. Gulf Records of China, Vol. 12 (in Chinese). Beijing: China Ocean Press, 144–197
|
Colbert S L, Hammond D E. 2007. Temporal and spatial variability of radium in the coastal ocean and its impact on computation of nearshore cross-shelf mixing rates. Continental Shelf Research, 27(10–11): 1477–1500
|
Douglas A R, Murgulet D, Peterson R N. 2020. Submarine groundwater discharge in an anthropogenically disturbed, semi-arid estuary. Journal of hydrology, 580: 124369. doi: 10.1016/j.jhydrol.2019.124369
|
Garcia-Orellana J, Cochran J K, Bokuniewicz H, et al. 2014. Evaluation of 224Ra as a tracer for submarine groundwater discharge in Long Island Sound (NY). Geochimica et Cosmochimica Acta, 141: 314–330. doi: 10.1016/j.gca.2014.05.009
|
Gibbes B, Robinson C, Li L, et al. 2008. Tidally driven pore water exchange within offshore intertidal sandbanks: part Ⅱ numerical simulations. Estuarine, Coastal and Shelf Science, 80(4): 472–482
|
Gu Hequan. 2015. A quantitative study on the sources and sinks of radium isotopes in near-shore waters—Taking Changjiang estuary and its adjacent offshore area, Bamen Lagoon, Gaolong Bay and Boao Bay in Hainan for example (in Chinese)[dissertation]. Shanghai: East China Normal University
|
Hancock G J, Webster I T, Ford P W, et al. 2000. Using Ra isotopes to examine transport processes controlling benthic fluxes into a shallow estuarine lagoon. Geochimica et Cosmochimica Acta, 64(21): 3685–3699. doi: 10.1016/S0016-7037(00)00469-5
|
He Shuai. 2015a. Numerical study on water quality and environmental capacity of Maowei Sea (in Chinese)[dissertation]. Qingdao: Ocean University of China
|
He Zhengzhong. 2015b. Sedimentation rate research in Guangxi Beibu Gulf (in Chinese)[dissertation]. Nanning: Guangxi University
|
Hsu Feng-Hsin, Su Chih-Chieh, Wang Pei-Ling, et al. 2020. Temporal variations of submarine groundwater discharge into a tide-dominated coastal wetland (Gaomei Wetland, Western Taiwan) indicated by radon and radium isotopes. Water, 12(6): 1806. doi: 10.3390/w12061806
|
Huang Ya’nan. 2015. An analytical study of tidal-induced seawater-groundwater exchange rate through a horizontal seabed (in Chinese)[dissertation]. Beijing: China University of Geosciences (Beijing)
|
Ip C C M, Li Xiangdong, Zhang Gan, et al. 2007. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147(2): 311–323. doi: 10.1016/j.envpol.2006.06.028
|
Katz A J, Thompson A H. 1985. Fractal sandstone pores: implications for conductivity and pore formation. Physical Review Letters, 54(12): 1325–1328. doi: 10.1103/PhysRevLett.54.1325
|
Knauss J A. 1996. Introduction to Physical Oceanography. 2nd ed. Upper Saddle River, New Jersey: Prentice Hall, 176–201
|
Knee K L, Paytan A. 2011. 4.08-submarine groundwater discharge: a source of nutrients, metals, and pollutants to the coastal ocean. Treatise on Estuarine and Coastal Science, 4: 205–233
|
Krishnaswami S, Graustein W C, Turekian K K, et al. 1982. Radium, thorium and radioactive lead isotopes in groundwaters: application to the in situ determination of adsorption-desorption rate constants and retardation factors. Water Resources Research, 18(6): 1663–1675. doi: 10.1029/WR018i006p01663
|
Krohn C E, Thompson A H. 1986. Fractal sandstone pores: automated measurements using scanning-electron-microscope images. Physical Review B, 33(9): 6366–6374. doi: 10.1103/PhysRevB.33.6366
|
Lamontagne S, Webster I T. 2019. Cross-shelf transport of submarine groundwater discharge tracers: a sensitivity analysis. Journal of Geophysical Research: Oceans, 124(1): 453–469. doi: 10.1029/2018JC014473
|
Lecher A L, Kessler J, Sparrow K, et al. 2016. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites. Limnology and Oceanography, 61(S1): S344–S355. doi: 10.1002/lno.10118
|
Lee E, Hyun Y, Lee K K. 2013. Sea level periodic change and its impact on submarine groundwater discharge rate in coastal aquifer. Estuarine, Coastal and Shelf Science, 121–122: 51–60
|
Li Yuanhui, Gregory S. 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38(5): 703–714. doi: 10.1016/0016-7037(74)90145-8
|
Li Hailong, Jiao JiuJimmy. 2013. Quantifying tidal contribution to submarine groundwater discharges: A review. Chinese Science Bulletin, 58: 3053-3059
|
Li Guangzhao, Liang Wen, Liu Jinghe. 2001. Features of underwater dynamic geomorphology of the Qinzhou Bay. Geography and Territorial Research (in Chinese), 17(4): 70–75
|
Liu Qian, Charette M A, Henderson P B, et al. 2014. Effect of submarine groundwater discharge on the coastal ocean inorganic carbon cycle. Limnology and Oceanography, 59(5): 1529–1554. doi: 10.4319/lo.2014.59.5.1529
|
Liu Jianan, Du Jinzhou, Wu Ying, et al. 2018. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary. Estuarine, Coastal and Shelf Science, 203: 17–28
|
Liu Jianan, Du Jinzhou, Yu Xueqing. 2021. Submarine groundwater discharge enhances primary productivity in the Yellow Sea, China: insight from the separation of fresh and recirculated components. Geoscience Frontiers, 12(6): 101204. doi: 10.1016/j.gsf.2021.101204
|
Liu Jian’an, Su Ni, Wang Xilong, et al. 2017. Submarine groundwater discharge and associated nutrient fluxes into the southern Yellow Sea: a case study for semi-enclosed and oligotrophic seas-implication for green tide bloom. Journal of Geophysical Research: Oceans, 122(1): 139–152. doi: 10.1002/2016JC012282
|
Liu Ruiguo, Wang Wen. 2009. Analysis on relation between groundwater level changes and precipitation. Ground Water (in Chinese), 31(5): 42–44
|
Luo Hao. 2018. Study of submarine groundwater discharge by Ra and its associated nutrient fluxes into the Qinzhou Bay, China (in Chinese)[dissertation]. Shanghai: East China Normal University
|
Luo Xin, Jiao Jiu Jimmy, Liu Yi, et al. 2018. Evaluation of water residence time, submarine groundwater discharge, and maximum new production supported by groundwater borne nutrients in a coastal upwelling shelf system. Journal of Geophysical Research: Oceans, 123(1): 631–655. doi: 10.1002/2017JC013398
|
Ma Qian. 2016. Quantifying seawater-groundwater exchange rates: case studies in muddy tidal flat and sandy beach in Laizhou Bay (in Chinese)[dissertation]. Beijing: China University of Geosciences (Beijing)
|
Maher D T, Santos I R, Golsby-Smith L, et al. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink?. Limnology and Oceanography, 58(2): 475–488
|
Mo Yongjie. 1993. Coastal geomorphological and sediment type of Qinzhou drowned-valley-bays. Marine Science Bulletin (in Chinese), 12(5): 56–61
|
Moore W S. 2007. Seasonal distribution and flux of radium isotopes on the southeastern US continental shelf. Journal of Geophysical Research: Oceans, 112(C10): C10013,
|
Moore W S. 2010a. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2: 59–88. doi: 10.1146/annurev-marine-120308-081019
|
Moore W S. 2010b. A reevaluation of submarine groundwater discharge along the southeastern coast of North America. Global Biogeochemical Cycles, 24(4): GB4005. doi: 10.1029/2009GB003747
|
Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1): 1321–1329. doi: 10.1029/95JC03139
|
Moore W S, Beck M, Riedel T, et al. 2011. Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: a decade of studies in the German Wadden Sea. Geochimica et Cosmochimica Acta, 75(21): 6535–6555. doi: 10.1016/j.gca.2011.08.037
|
Murgulet D, Trevino M, Douglas A, et al. 2018. Temporal and spatial fluctuations of groundwater-derived alkalinity fluxes to a semiarid coastal embayment. Science of the Total Environment, 630: 1343–1359. doi: 10.1016/j.scitotenv.2018.02.333
|
Nozaki Y, Tsubota H, Kasemsupaya V, et al. 1991. Residence times of surface water and particle-reactive 210Pb and 210Po in the East China and Yellow seas. Geochimica et Cosmochimica Acta, 55(5): 1265–1272. doi: 10.1016/0016-7037(91)90305-O
|
Pereira-Filho J, Schettini C A F, Rörig L, et al. 2001. Intratidal variation and net transport of dissolved inorganic nutrients, POC and chlorophyll a in the Camboriú River Estuary, Brazil. Estuarine, Coastal and Shelf Science, 53(2): 249–257
|
Rengarajan R, Sarin M M, Somayajulu B L K, et al. 2002. Mixing in the surface waters of the western Bay of Bengal using 228Ra and 226Ra. Journal of Marine Research, 60(2): 255–279. doi: 10.1357/00222400260497480
|
Robinson C, Li L, Prommer H. 2007. Tide-induced recirculation across the aquifer-ocean interface. Water Resources Research, 43(7): W07428. doi: 10.1029/2006WR005679
|
Rodellas V, Garcia-Orellana J, Tovar-Sánchez A, et al. 2014. Submarine groundwater discharge as a source of nutrients and trace metals in a Mediterranean bay (Palma Beach, Balearic Islands). Marine Chemistry, 160: 56–66. doi: 10.1016/j.marchem.2014.01.007
|
Rutgers van der Loeff M M. 1981. Wave effects on sediment water exchange in a submerged sand bed. Netherlands Journal of Sea Research, 15(1): 100–112. doi: 10.1016/0077-7579(81)90009-0
|
Santos I R, Eyre B D, Huettel M. 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal and Shelf Science, 98: 1–15
|
Su Ni. 2013. Tracing coastal water mixing processes and submarine groundwater discharge by radium isotopes (in Chinese)[dissertation]. Shanghai: East China Normal University
|
Sun Hongbin, Furbish D J. 1995. Moisture content effect on radon emanation in porous media. Journal of Contaminant Hydrology, 18(3): 239–255. doi: 10.1016/0169-7722(95)00002-D
|
Sun Yin, Torgersen T. 2001. Adsorption-desorption reactions and bioturbation transport of 224Ra in marine sediments: a one-dimensional model with applications. Marine Chemistry, 74(4): 227–243. doi: 10.1016/S0304-4203(01)00017-2
|
Swarzenski P W, Izbicki J A. 2009. Coastal groundwater dynamics off Santa Barbara, California: combining geochemical tracers, electromagnetic seep meters, and electrical resistivity. Estuarine, Coastal and Shelf Science, 83(1): 77–89
|
Taniguchi M, Burnett W C, Cable J E, et al. 2002. Investigation of submarine groundwater discharge. Hydrological Processes, 16(11): 2115–2129. doi: 10.1002/hyp.1145
|
Taniguchi M, Ishitobi T, Chen Jianyao, et al. 2008a. Submarine groundwater discharge from the Yellow River Delta to the Bohai Sea, China. Journal of Geophysical Research: Oceans, 113(C6): C06025. doi: 10.1029/2007JC004498
|
Taniguchi M, Stieglitz T, Ishitobi T. 2008b. Temporal variability of water quality of submarine groundwater discharge in Ubatuba, Brazil. Estuarine, Coastal and Shelf Science, 76(3): 484–492
|
Tian Haitao, Hu Xisheng, Zhang Shaofeng, et al. 2014. Distribution and potential ecological risk assessment of heavy metals insurface sediments of Maowei Sea. Marine Environmental Science (in Chinese), 33(2): 187–191
|
Uddameri V, Singaraju S, Hernandez E A. 2014. Temporal variability of freshwater and pore water recirculation components of submarine groundwater discharges at Baffin Bay, Texas. Environmental Earth Sciences, 71(6): 2517–2533. doi: 10.1007/s12665-013-2902-1
|
Wang Xilong, Du Jinzhou. 2016. Submarine groundwater discharge into typical tropical lagoons: a case study in eastern Hainan Island, China. Geochemistry, Geophysics, Geosystems, 17(11): 4366–4382
|
Wang Guizhi, Jing Wenping, Yi Shuling, et al. 2014. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system. Environmental Science & Technology, 48(22): 13069–13075
|
Wang Xuejing, Li Hailong, Jiao Jiu Jimmy, et al. 2015. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux. Scientific Reports, 5: 8814. doi: 10.1038/srep08814
|
Wheatcraft S W, Tyler S W. 1988. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resources Research, 24(4): 566–578. doi: 10.1029/WR024i004p00566
|
Wilson A M, Evans T B, Moore W S, et al. 2015. What time scales are important for monitoring tidally influenced submarine groundwater discharge? Insights from a salt marsh. Water Resources Research, 51(6): 4198–4207. doi: 10.1002/2014WR015984
|
Xu Shengyi. 2010. Numerical simulation for the current and suspended sediment in the key bays of Guangxi Offshore Area (in Chinese)[dissertation]. Shanghai: East China Normal University
|
Yu Boming, Cheng Ping. 2002. A fractal permeability model for bi-dispersed porous media. International Journal of Heat and Mass Transfer, 45(14): 2983–2993. doi: 10.1016/S0017-9310(02)00014-5
|
Yu Boming, Li Jianhua. 2001. Some fractal characters of porous media. Fractals, 9(3): 365–372. doi: 10.1142/S0218348X01000804
|
Yu Xiayang. 2021. Hydrodynamics in subterranean estuaries subjected to irregular forcing factors (in Chinese)[dissertation]. Nanjing: Hohai University
|
Zhang Bohu. 2010. Sediment dynamics and evolution of the key harbors in Guangxi, China (in Chinese)[dissertation]. Shanghai: East China Normal University
|
Zhang Chengcheng. 2018. Estimating submarine groundwater discharge and associated nutrient fluxes into Liaodong Bay using radium isotopes (in Chinese)[dissertation]. Beijing: China University of Geosciences (Beijing)
|
Zhang Ling, Jia Zaiqiang, Ouyang Qiuming. 2008. Analysis on the relationship between groundwater level of spring water and rainfall in Zhangqiu. Journal of Anhui Agricultural Sciences (in Chinese), 36(27): 11931–11932,11939
|
Zhang Bing, Zhang Jing, Yoshida T. 2017. Temporal variations of groundwater table and implications for submarine groundwater discharge: a three-decade case study in Central Japan. Hydrology and Earth System Sciences Discussions, 21, 3417−3425,
|