Volume 42 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Weizhen Jiang, Guizhi Wang, Qing Li, Manab Kumar Dutta, Shilei Jin, Guiyuan Dai, Yi Xu. The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone[J]. Acta Oceanologica Sinica, 2023, 42(8): 61-76. doi: 10.1007/s13131-023-2234-2
Citation: Weizhen Jiang, Guizhi Wang, Qing Li, Manab Kumar Dutta, Shilei Jin, Guiyuan Dai, Yi Xu. The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone[J]. Acta Oceanologica Sinica, 2023, 42(8): 61-76. doi: 10.1007/s13131-023-2234-2

The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone

doi: 10.1007/s13131-023-2234-2
Funds:  The Fund of Ministry of Science and Technology of China under contract No. 2022YFC3105402; the Natural Science Foundation of Fujian Province of China under contract No. 2019J01020; the National Natural Science Foundation of China under contract No. 42141001; the Fujian Provincial Central Guided Local Science and Technology Development Special Project under contract No. 2022L3078.
More Information
  • Corresponding author: E-mail: gzhwang@xmu.edu.cn
  • Received Date: 2023-04-20
  • Accepted Date: 2023-06-16
  • Available Online: 2023-08-28
  • Publish Date: 2023-08-31
  • Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove-Spartina alterniflora ecozone in the Zhangjiang River Estuary, China. The carbon fluxes via pore water exchange were estimated using 222Rn and 228Ra as tracers to be (2.15 ± 0.63) mol/(m2∙d) for dissolved inorganic carbon (DIC) and (–0.008 ± 0.07) mol/(m2∙d) for dissolved organic carbon (DOC) in the wet season and (3.02 ± 0.65) mol/(m2∙d) for DIC and (–0.15 ± 0.007) mol/(m2∙d) for DOC in the dry season in the mangrove-dominated creek (M-creek), while (2.52 ± 0.82) mol/(m2∙d) for DIC and (0.02 ± 0.09) mol/(m2∙d) for DOC in the dry season in the S. alterniflora-dominated creek (SA-creek). The negative value means that pore water was a sink of DOC in the creek. The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%–55% of the net carbon fixed by mangrove vegetation and was 3–4 times as much as the soil carbon accretion in the mangroves. The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79% of the carbon outwelling from the SA-creek, implying effective fixation of carbon by the wetland ecosystem. Moreover, it resulted in 54% in the dry season, 75% in the wet season of the carbon dioxide released from the M-creek to the atmosphere, and 84% of the release from the SA-creek. Therefore, quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands.
  • loading
  • Adame M F, Kauffman J B, Medina I, et al. 2013. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS ONE, 8(2): e56569. doi: 10.1371/journal.pone.0056569
    Alongi D M. 2012. Carbon sequestration in mangrove forests. Carbon Management, 3(3): 313–322. doi: 10.4155/cmt.12.20
    Alongi D M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6: 195–219. doi: 10.1146/annurev-marine-010213-135020
    Alongi D M. 2020. Carbon balance in salt marsh and mangrove ecosystems: a global synthesis. Journal of Marine Science and Engineering, 8(10): 767. doi: 10.3390/jmse8100767
    Alongi D M, Tirendi F, Dixon P, et al. 1999. Mineralization of organic matter in intertidal sediments of a tropical semi-enclosed delta. Estuarine, Coastal and Shelf Science, 48(4): 451–467,
    Alongi D M, Trott L A, Rachmansyah, et al. 2008. Growth and development of mangrove forests overlying smothered coral reefs, Sulawesi and Sumatra, Indonesia. Marine Ecology Progress Series, 370: 97–109. doi: 10.3354/meps07661
    Alongi D M, Wattayakorn G, Pfitzner J, et al. 2001. Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Marine Geology, 179(1–2): 85–103,
    Arias-Ortiz A, Masqué P, Glass L, et al. 2021. Losses of soil organic carbon with deforestation in mangroves of Madagascar. Ecosystems, 24(1): 1–19. doi: 10.1007/S10021-020-00500-Z
    Atwood T B, Connolly R M, Almahasheer H, et al. 2017. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7): 523–528. doi: 10.1038/NCLIMATE3326
    Bianchi T S, Allison M A, Zhao Jun, et al. 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 119: 7–16,
    Biswas H, Mukhopadhyay S K, De T K, et al. 2004. Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India. Limnology and Oceanography, 49(1): 95–101. doi: 10.4319/lo.2004.49.1.0095
    Borges V A, Djenidi S, Lacroix G, et al. 2003. Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters, 30(11): 1558. doi: 10.1029/2003GL017143
    Bouillon S, Borges A V, Castañeda-Moya E, et al. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22(2): GB2013. doi: 10.1029/2007GB003052
    Bouillon S, Frankignoulle M, Dehairs F, et al. 2003. Inorganic and organic carbon biogeochemistry in the Gautami Godavari Estuary (Andhra Pradesh, India) during pre-monsoon: the local impact of extensive mangrove forests. Global Biogeochemical Cycles, 17(4): 1114. doi: 10.1029/2002GB002026
    Brunskill G J, Zagorskis I, Pfitzner J. 2002. Carbon burial rates in sediments and a carbon mass balance for the Herbert River region of the great barrier reef continental shelf, North Queensland, Australia. Estuarine, Coastal and Shelf Science, 54(4): 677–700,
    Burnett W C, Dulaiova H. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity, 69(1–2): 21–35,
    Burnett W C, Peterson R, Moore W S, et al. 2008. Radon and radium isotopes as tracers of submarine groundwater discharge—Results from the Ubatuba, Brazil SGD assessment intercomparison. Estuarine, Coastal and Shelf Science, 76(3): 501–511,
    Call M, Maher D T, Santos I R, et al. 2015. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek. Geochimica et Cosmochimica Acta, 150: 211–225. doi: 10.1016/j.gca.2014.11.023
    Call M, Santos I R, Dittmar T, et al. 2019. High pore-water derived CO2 and CH4 emissions from a macro-tidal mangrove creek in the Amazon region. Geochimica et Cosmochimica Acta, 247: 106–120. doi: 10.1016/j.gca.2018.12.029
    Chen Siming. 2021. Potential distribution of Spartina alterniflora along the Chinese coast and its response to climate change. Journal of Ecology and Rural Environment (in Chinese), 37(12): 1575–1585. doi: 10.19741/j.issn.1673-4831.2021.0509
    Chen Luzhen, Chen Yining, Zhang Yihui, et al. 2021a. Mangrove carbon sequestration and sediment deposition changes under cordgrass invasion. In: Sidik F, Friess D A, eds. Dynamic Sedimentary Environments of Mangrove Coasts. Amsterdam: Elsevier Press, 473–509
    Chen Weifang, Liu Qian, Huh C A, et al. 2010a. Signature of the Mekong River plume in the western South China Sea revealed by radium isotopes. Journal of Geophysical Research: Oceans, 115(C12): C12002. doi: 10.1029/2010JC006460
    Chen Xiaogang, Santos I R, Call M, et al. 2021b. The mangrove CO2 pump: tidally driven pore-water exchange. Limnology and Oceanography, 66(4): 1563–1577. doi: 10.1002/lno.11704
    Chen Guangchen, Ulumuddin Y I, Pramudji S, et al. 2014. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Science of the Total Environment, 487: 91–96. doi: 10.1016/j.scitotenv.2014.03.140
    Chen Juan, Wu Feihua, Xiao Qiang, et al. 2010b. Diurnal variation of nitric oxide emission flux from a mangrove wetland in Zhangjiang River Estuary, China. Estuarine, Coastal and Shelf Science, 90(4): 212–220,
    Chen Xiaogang, Zhang Fenfen, Lao Yanling, et al. 2018. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?. Journal of Geophysical Research: Oceans, 123(9): 6962–6979. doi: 10.1029/2018JC014448
    Choi Y, Wang Yang. 2004. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Global Biogeochemical Cycles, 18(4): GB4016. doi: 10.1029/2004GB002261
    Corbett D R, Burnett W C, Cable P H, et al. 1998. A multiple approach to the determination of radon fluxes from sediments. Journal of Radioanalytical and Nuclear Chemistry, 236(1–2): 247–253,
    Cusack M, Saderne V, Arias-Ortiz A, et al. 2018. Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. Environmental Research Letters, 13(7): 074007. doi: 10.1088/1748-9326/aac899
    Donato D C, Kauffman J B, Murdiyarso D, et al. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5): 293–297. doi: 10.1038/NGEO1123
    Feng Jianxiang, Zhou Jian, Wang Liming, et al. 2017. Effects of short-term invasion of Spartina alterniflora and the subsequent restoration of native mangroves on the soil organic carbon, nitrogen and phosphorus stock. Chemosphere, 184: 774–783. doi: 10.1016/j.chemosphere.2017.06.060
    Gao Guifeng, Li Pengfei, Shen Zhijun, et al. 2018. Exotic Spartina alterniflora invasion increases CH4 while reduces CO2 emissions from mangrove wetland soils in southeastern China. Scientific Reports, 8(1): 9243. doi: 10.1038/s41598-018-27625-5
    Gardner L R, Gaines E F. 2008. A method for estimating pore water drainage from marsh soils using rainfall and well records. Estuarine, Coastal and Shelf Science, 79(1): 51–58,
    Gonneea M E, Paytan A, Herrera-Silveira J A. 2004. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science, 61(2): 211–227,
    Grellier S, Janeau J L, Nhon D H, et al. 2017. Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam). Science of the Total Environment, 593–594: 654–663,
    Hamilton S E, Friess D A. 2018. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change, 8(3): 240–244. doi: 10.1038/s41558-018-0090-4
    Hemond H F, Fifield J L. 1982. Subsurface flow in salt marsh peat: a model and field study. Limnology and Oceanography, 27(1): 126–136. doi: 10.4319/lo.1982.27.1.0126
    Henry K M, Twilley R R. 2013. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. Journal of Coastal Research, 29(6): 1273–1283. doi: 10.2112/JCOASTRES-D-12-00184.1
    Jones T G, Ratsimba H R, Ravaoarinorotsihoarana L, et al. 2014. Ecological variability and carbon stock estimates of mangrove ecosystems in northwestern Madagascar. Forests, 5(1): 177–205. doi: 10.3390/f5010177
    Kauffman J B, Trejo H H, del Carmen Jesus Garcia M, et al. 2016. Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management, 24(2): 203–216. doi: 10.1007/s11273-015-9453-z
    Kelly J L, Dulai H, Glenn C R, et al. 2019. Integration of aerial infrared thermography and in situ radon-222 to investigate submarine groundwater discharge to Pearl Harbor, Hawaii, USA. Limnology and Oceanography, 64(1): 238–257. doi: 10.1002/lno.11033
    Koné Y J M, Borges A V. 2008. Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam). Estuarine, Coastal and Shelf Science, 77(3): 409–421,
    Konikow L F, Akhavan M, Langevin C D, et al. 2013. Seawater circulation in sediments driven by interactions between seabed topography and fluid density. Water Resources Research, 49(3): 1386–1399. doi: 10.1002/wrcr.20121
    Koretsky C M, Meile C, Van Cappellen P. 2002. Quantifying bioirrigation using ecological parameters: a stochastic approach. Geochemical Transactions, 3(1): 17. doi: 10.1186/1467-4866-3-17
    Krest J M, Moore W S, Rama. 1999. 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: indicators of groundwater input. Marine Chemistry, 64(3): 129–152. doi: 10.1016/S0304-4203(98)00070-X
    Kristensen E, Flindt M R, Ulomi S, et al. 2008. Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Marine Ecology Progress Series, 370: 53–67. doi: 10.3354/meps07642
    Kusumaningtyas M A, Hutahaean A A, Fischer H W, et al. 2019. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218: 310–323,
    Lambert M J, Burnett W C. 2003. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry, 66(1–2): 55–73,
    Li Dongyi, Xu Yonghang, Li Yunhai, et al. 2018. Sedimentary records of human activity and natural environmental evolution in sensitive ecosystems: a case study of a coral nature reserve in Dongshan Bay and a mangrove forest nature reserve in Zhangjiang River Estuary, Southeast China. Organic Geochemistry, 121: 22–35. doi: 10.1016/j.orggeochem.2018.02.011
    Lin Qiulian. 2019. The influence of aerial root/belowground root structure on the vertical accretion and elevation change of mangroves (in Chinese)[dissertation]. Xiamen: Xiamen University
    Liu Mingyue, Li Huiying, Li Lin, et al. 2017. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sensing, 9(6): 539. doi: 10.3390/rs9060539
    Lynch J C, Meriwether J R, McKee B A, et al. 1989. Recent accretion in mangrove ecosystems based on 137Cs and 210Pb. Estuaries, 12(4): 284–299. doi: 10.2307/1351907
    MacIntyre S, Wanninkhof R H, Chanton J P. 1995. Trace gas exchange across the air-water interface in freshwater and coastal marine environments. In: Mattson P A, Harris R C, eds. Methods in Ecology-Biogenic Trace Gases: Measuring Emissions from Soil and Water. New York: Blackwell Science, 52–77
    MacKenzie R, Sharma S, Rovai A R. 2021. Environmental drivers of blue carbon burial and soil carbon stocks in mangrove forests. In: Sidik F, Friess D A, eds. Dynamic Sedimentary Environments of Mangrove Coasts. Amsterdam: Elsevier Press, 275–294
    Maher D T, Call M, Santos I R, et al. 2018. Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biology Letters, 14(7): 20180200. doi: 10.1098/rsbl.2018.0200
    Maher D T, Santos I R, Golsby-Smith L, et al. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink?. Limnology and Oceanography, 58(2): 475–488. doi: 10.4319/lo.2013.58.2.0475
    Maher D T, Santos I R, Schulz K G, et al. 2017. Blue carbon oxidation revealed by radiogenic and stable isotopes in a mangrove system. Geophysical Research Letters, 44(10): 4889–4896. doi: 10.1002/2017GL073753
    Martens C S, Kipphut G W, Val Klump J. 1980. Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements. Science, 208(4441): 285–288. doi: 10.1126/science.208.4441.285
    Meek B D, Rechel E R, Carter L M, et al. 1992. Infiltration rate of a sandy loam soil: effects of traffic, tillage, and plant roots. Soil Science Society of America Journal, 56(3): 908–913. doi: 10.2136/sssaj1992.03615995005600030038x
    Millero F J, Hiscock W T, Huang F, et al. 2001. Seasonal variation of the carbonate system in Florida Bay. Bulletin of Marine Science, 68(1): 101–123
    Monji N, Hamotani K, Hamada Y, et al. 2002. Exchange of CO2 and heat between mangrove forest and the atmosphere in wet and dry seasons in southern Thailand. Journal of Agricultural Meteorology, 58(2): 71–77. doi: 10.2480/agrmet.58.71
    Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1): 1321–1329. doi: 10.1029/95JC03139
    Moore W S, Blanton J O, Joye S B. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans, 111(C9): C09006. doi: 10.1029/2005JC003041
    Nozaki Y, Kasemsupaya V, Tsubota H. 1989. Mean residence time of the shelf water in the East China and the Yellow Seas determined by 228Ra/226Ra measurements. Geophysical Research Letters, 16(11): 1297–1300. doi: 10.1029/gl016i011p01297
    Page S E, Siegert F, Rieley J O, et al. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911): 61–65. doi: 10.1038/nature01131
    Passos T R G, Artur A G, Nóbrega G N, et al. 2016. Comparison of the quantitative determination of soil organic carbon in coastal wetlands containing reduced forms of Fe and S. Geo-Marine Letters, 36(3): 223–233. doi: 10.1007/s00367-016-0437-7
    Pelletier L, Strachan I B, Roulet N T, et al. 2015. Can boreal peatlands with pools be net sinks for CO2?. Environmental Research Letters, 10(3): 035002. doi: 10.1088/1748-9326/10/3/035002
    Peng T H, Takahashi T, Broecker W S. 1974. Surface radon measurements in the North Pacific Ocean Station Papa. Journal of Geophysical Research, 79(12): 1772–1780. doi: 10.1029/JC079i012p01772
    Pilson M E Q. 2013. An Introduction to the Chemistry of the Sea. 2nd ed. Cambridge: Cambridge University, 396–398
    Prakash R, Srinivasamoorthy K, Gopinath S, et al. 2018. Radon isotope assessment of submarine groundwater discharge (SGD) in Coleroon River Estuary, Tamil Nadu, India. Journal of Radioanalytical and Nuclear Chemistry, 317(1): 25–36. doi: 10.1007/s10967-018-5877-2
    Pülmanns N, Diele K, Mehlig U, et al. 2014. Burrows of the semi-terrestrial crab Ucides cordatus enhance CO2 release in a north Brazilian mangrove forest. PLoS ONE, 9(10): e109532. doi: 10.1371/journal.pone.0109532
    Ranjan R K, Routh J, Ramanathan A L, et al. 2011. Elemental and stable isotope records of organic matter input and its fate in the Pichavaram mangrove-estuarine sediments (Tamil Nadu, India). Marine Chemistry, 126(1–4): 163–172,
    Ray R, Ganguly D, Chowdhury C, et al. 2011. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmospheric Environment, 45(28): 5016–5024. doi: 10.1016/j.atmosenv.2011.04.074
    Ray R, Michaud E, Aller R C, et al. 2018. The sources and distribution of carbon (DOC, POC, DIC) in a mangrove dominated estuary (French Guiana, South America). Biogeochemistry, 138(3): 297–321. doi: 10.1007/s10533-018-0447-9
    Reithmaier G M S, Chen Xiaogang, Santos I R, et al. 2021. Rainfall drives rapid shifts in carbon and nutrient source-sink dynamics of an urbanised, mangrove-fringed estuary. Estuarine Coastal and Shelf Science, 249: 107064. doi: 10.1016/j.ecss.2020.107064
    Ridd P V. 1996. Flow through animal burrows in mangrove creeks. Estuarine, Coastal and Shelf Science, 43(5): 617–625,
    Robinson C, Li L, Barry D A. 2007. Effect of tidal forcing on a subterranean estuary. Advances in Water Resources, 30(4): 851–865. doi: 10.1016/j.advwatres.2006.07.006
    Rovai A S, Twilley R R. 2021. Gaps, challenges, and opportunities in mangrove blue carbon research: a biogeographic perspective. In: Sidik F, Friess D A, eds. Dynamic Sedimentary Environments of Mangrove Coasts. Amsterdam: Elsevier Press, 295–334
    Rovai A S, Twilley R R, Castañeda-Moya E, et al. 2018. Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6): 534–538. doi: 10.1038/s41558-018-0162-5
    Sanders C J, Maher D T, Tait D R, et al. 2016. Are global mangrove carbon stocks driven by rainfall?. Journal of Geophysical Research: Biogeosciences, 121(10): 2600–2609. doi: 10.1002/2016JG003510
    Sanders C J, Santos I R, Barcellos R, et al. 2012. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: consequence of sea level rise?. Continental Shelf Research, 43: 86–94. doi: 10.1016/j.csr.2012.04.015
    Sanders C J, Smoak J M, Naidu A S, et al. 2010. Mangrove forest sedimentation and its reference to sea level rise, Cananeia, Brazil. Environmental Earth Sciences, 60(6): 1291–1301. doi: 10.1007/s12665-009-0269-0
    Santos I R, Chen Xiaogang, Lecher A L, et al. 2021. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5): 307–323. doi: 10.1038/s43017-021-00152-0
    Santos I R, Maher D T, Eyre B D. 2012. Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science & Technology, 46(14): 7685–7691. doi: 10.1021/es301961b
    Santos I R, Maher D T, Larkin R, et al. 2019. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnology and Oceanography, 64(3): 996–1013. doi: 10.1002/lno.11090
    Seeberg-Elverfeldt J, Schlüter M, Feseker T, et al. 2005. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnology and Oceanography: Methods, 3(8): 361–371. doi: 10.4319/lom.2005.3.361
    Smith C G, Price R M, Swarzenski P W, et al. 2016. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: shark river slough, Florida Coastal Everglades, USA. Estuaries and Coasts, 39(6): 1600–1616. doi: 10.1007/s12237-016-0079-z
    Stieglitz T C, Clark J F, Hancock G J. 2013. The mangrove pump: the tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets. Geochimica et Coshmochimica Acta, 102: 12–22. doi: 10.1016/j.gca.2012.10.033
    Stieglitz T, Ridd P, Müller P. 2000. Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp. Hydrobiologia, 421(1): 69–76. doi: 10.1023/A:1003925502665
    Susilo A, Ridd P V, Thomas S. 2005. Comparison between tidally driven groundwater flow and flushing of animal burrows in tropical mangrove swamps. Wetlands Ecology and Management, 13(4): 377–388. doi: 10.1007/s11273-004-0164-0
    Swarzenski P, Reich C, Rudnick D. 2009. Examining submarine ground-water discharge into Florida bay by using 222Rn and continuous resistivity profiling. U. S. Geological Survey, Open-File Report 2008–1342. https://pubs.usgs.gov/publication/ofr20081342[2009-07-0-23/2022-09-08]
    Sweeney C, Gloor E, Jacobson A R, et al. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles, 21(2): GB2015. doi: 10.1029/2006GB002784
    Taillardat P, Willemsen P, Marchand C, et al. 2018. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio, Vietnam). Journal of Hydrology, 563: 303–318. doi: 10.1016/j.jhydrol.2018.05.042
    Tait D R, Maher D T, Macklin P A, et al. 2016. Mangrove pore water exchange across a latitudinal gradient. Geophysical Research Letters, 43(7): 3334–3341. doi: 10.1002/2016GL068289
    Tait D R, Maher D T, Sanders C J, et al. 2017. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves. Geochimica et Cosmochimica Acta, 200: 295–309. doi: 10.1016/j.gca.2016.12.024
    Tateda Y, Nhan D D, Wattayakorn G, et al. 2005. Preliminary evaluation of organic carbon sedimentation rates in Asian mangrove coastal ecosystems estimated by 210Pb chronology. Radioprotection, 40(S1): S527–S532. doi: 10.1051/radiopro:2005s1-077
    Thompson B S, Clubbe C P, Primavera J H, et al. 2014. Locally assessing the economic viability of blue carbon: a case study from Panay Island, the Philippines. Ecosystem Services, 8: 128–140. doi: 10.1016/j.ecoser.2014.03.004
    Wang Mao, Gao Xueqin, Wang Wenqing. 2014. Differences in burrow morphology of crabs between Spartina alterniflora marsh and mangrove habitats. Ecological Engineering, 69: 213–219. doi: 10.1016/j.ecoleng.2014.03.096
    Wang Fenfang, Xiao Kai, Santos I R, et al. 2022. Porewater exchange drives nutrient cycling and export in a mangrove-salt marsh ecotone. Journal of Hydrology, 606: 127401. doi: 10.1016/j.jhydrol.2021.127401
    Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research: Oceans, 97(C5): 7373–7382. doi: 10.1029/92JC00188
    Weiss R F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3): 203–215. doi: 10.1016/0304-4203(74)90015-2
    Whelan K R T, Smith T J, Cahoon D R, et al. 2005. Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth. Estuaries, 28(6): 833–843. doi: 10.1007/BF02696013
    Wilson A M, Gardner L R. 2006. Tidally driven groundwater flow and solute exchange in a marsh: numerical simulations. Water Resources Research, 42(1): W01405. doi: 10.1029/2005WR004302
    Worthington T A, Zu Ermgassen P S E, Friess D A, et al. 2020. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports, 10(1): 14652. doi: 10.1038/s41598-020-71194-5
    Xin Pei, Jin Guangqiu, Li Ling, et al. 2009. Effects of crab burrows on pore water flows in salt marshes. Advances in Water Resources, 32(3): 439–449. doi: 10.1016/j.advwatres.2008.12.008
    Xin Pei, Li Ling, Barry D A. 2013. Tidal influence on soil conditions in an intertidal creek-marsh system. Water Resources Research, 49(1): 137–150. doi: 10.1029/2012WR012290
    Yando E S, Osland M J, Willis J M, et al. 2016. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools. Journal of Ecology, 104(4): 1020–1031. doi: 10.1111/1365-2745.12571
    Yau Y Y Y, Xin Pei, Chen Xiaogang, et al. 2022. Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh. Limnology and Oceanography, 67(S2): S158–S170. doi: 10.1002/lno.12155
    Zhang Yan, Li Hailong, Wang Xuejing, et al. 2016. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn. Journal of Hydrology, 533: 103–113. doi: 10.1016/j.jhydrol.2015.11.027
    Zhang Ruifeng, Yan Chongling, Liu Jingchun. 2013. Effect of mangroves on the horizontal and vertical distributions of rare earth elements in sediments of the Zhangjiang Estuary in Fujian Province, southeastern China. Journal of Coastal Research, 29(6): 1341–1350. doi: 10.2112/JCOASTRES-D-11-00215.1
    Zhu Xudong, Sun Chenyang, Qin Zhangcai. 2021. Drought-induced salinity enhancement weakens mangrove greenhouse gas cycling. Journal of Geophysical Research: Biogeosciences, 126(8): e2021JG006416. doi: 10.1029/2021JG006416
  • Supplementary information.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (162) PDF downloads(22) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint