Citation: | Di Chen, Qizhen Sun. Characteristics of extratropical cyclone variability in the Northern Hemisphere and their response to rapid changes in Arctic sea ice[J]. Acta Oceanologica Sinica, 2023, 42(10): 10-22. doi: 10.1007/s13131-023-2277-4 |
Alexander L v, Tett S F B, Jonsson T. 2005. Recent observed changes in severe storms over the United Kingdom and Iceland. Geophysical Research Letters, 32. https://doi.org/10.1029/2005GL022371
|
Allan J C, Komar P D. 2006. Climate controls on US West Coast erosion processes. Journal of Coastal Research, 22(3): 511–529
|
Averkiev A S, Klevannyy K A. 2010. A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland. Continental Shelf Research, 30(6): 707–714. doi: 10.1016/j.csr.2009.10.010
|
Bader J, Mesquita M D S, Hodges K I, et al. 2011. A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmospheric Research, 101(4): 809–834. doi: 10.1016/j.atmosres.2011.04.007
|
Benesty J, Chen Jingdong, Huang Yiteng, et al. 2009. Pearson correlation coefficient. In: Cohen I, Huang Yiteng, Chen Jingdong, et al, eds. Noise Reduction in Speech Processing. Berlin: Springer.
|
Bengtsson L, Hodges K I, Roeckner E. 2006. Storm tracks and climate change. Journal of Climate, 19(15): 3518–3543. doi: 10.1175/JCLI3815.1
|
Black J, Johnson N C, Baxter S, et al. 2017. The predictors and forecast skill of Northern Hemisphere teleconnection patterns for lead times of 3–4 weeks. Monthly Weather Review, 145(7): 2855–2877. doi: 10.1175/MWR-D-16-0394.1
|
Blender R, Fraedrich K, Lunkeit F. 1997. Identification of cyclone-track regimes in the North Atlantic. Quarterly Journal of the Royal Meteorological Society, 123, 727–741. https://doi.org/10.1002/qj.49712353910
|
Budikova D. 2009. Role of Arctic sea ice in global atmospheric circulation: a review. Global and Planetary Change, 68(3): 149–163. doi: 10.1016/j.gloplacha.2009.04.001
|
Chang E K, Fu Y. 2002. Interdecadal variations in Northern Hemisphere winter storm track intensity. Journal of Climate, 15(6): 642–658,
|
Chang E K M, Zheng Cheng, Lanigan P, et al. 2015. Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity. Geophysical Research Letters, 42(14): 5983–5991. doi: 10.1002/2015GL064424
|
Chen Di, Gao Shanhong, Chen Jinnian. 2016. Impact of the Indo-Pacific warm pool SST anomaly on Arctic sea ice variation. Chinese Journal of Polar Research (in Chinese), 28(1): 49–57
|
Chen Di, Sun Qizhen. 2022a. Impact of global tropical sea surface temperature anomalies on the Arctic sea ice variation. Haiyang Xuebao (in Chinese), 44(12): 42–54
|
Chen Di, Sun Qizhen. 2022b. Impact of rapid Arctic sea ice decline on China’s crop yield under global warming. Environment, Development and Sustainability, 1–18, https://doi.org/10.1007/s10668-022-02757-x[2022-11-24
|
Chen Di, Sun Qizhen. 2023. Northern Pacific extratropical cyclone variability and its linkage with Arctic sea ice changes. Climate Dynamics, 61(11): 5875–5885
|
Chiang J C H, Lee S Y, Putnam A E, et al. 2014. South Pacific Split Jet, ITCZ shifts, and atmospheric north–south linkages during abrupt climate changes of the last glacial period. Earth and Planetary Science Letters, 406: 233–246. doi: 10.1016/j.jpgl.2014.09.012
|
Colle B A, Booth J F, Chang E K M. 2015. A review of historical and future changes of extratropical cyclones and associated impacts along the US east coast. Current Climate Change Reports, 1: 125–143. doi: 10.1007/s40641-015-0013-7
|
DelSole T, Trenary L, Tippett M K, et al. 2017. Predictability of week-3–4 average temperature and precipitation over the contiguous United States. Journal of Climate, 30(10): 3499–3512. doi: 10.1175/JCLI-D-16-0567.1
|
Donat M G, Leckebusch G C, Pinto J G, et al. 2010. Examination of wind storms over Central Europe with respect to circulation weather types and NAO phases. International Journal of Climatology, 30(9): 1289–1300. doi: 10.1002/joc.1982
|
Eichler T, Higgins W. 2006. Climatology and ENSO-related variability of North American extratropical cyclone activity. Journal of Climate, 19(10): 2076–2093. doi: 10.1175/JCLI3725.1
|
Favre A, Gershunov A. 2006. Extratropical cyclonic/anticyclonic activity in North-Eastern Pacific and air temperature extremes in western North America. Climate Dynamics, 26, 617–629. https://doi.org/10.1007/s00382-005-0101-9
|
Feser F, Barcikowska M, Krueger O, et al. 2015. Storminess over the North Atlantic and northwestern Europe—a review. Quarterly Journal of the Royal Meteorological Society, 141(687): 350–382. doi: 10.1002/qj.2364
|
Francis J A, Chan Weihan, Leathers D J, et al. 2009. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophysical Research Letters, 36(7): L07503. doi: 10.1029/2009GL037274
|
Froude L S R. 2011. TIGGE: comparison of the prediction of southern hemisphere extratropical cyclones by different ensemble prediction systems. Weather and Forecasting, 26(3): 388–398. doi: 10.1175/2010WAF2222457.1
|
Fu Qiang, Zhong Linhao, Luo Dehai. 2016. Characteristics of extratropical cyclone activity at North America-Atlantic area in winter and its relationship with NAO. Marine Science Bulletin (in Chinese), 35(1): 46–53.
|
Garfinkel C I, Schwartz C, Domeisen D I V, et al. 2018. Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. Journal of Geophysical Research: Atmospheres, 123(15): 7855–7866. doi: 10.1029/2018JD028724
|
Geng Quanzhen, Sugi M. 2001. Variability of the North Atlantic cyclone activity in winter analyzed from NCEP-NCAR reanalysis data. Journal of Climate, 14(18): 3863–3873. doi: 10.1175/1520-0442(2001)014<3863:VOTNAC>2.0.CO;2
|
Ghatak D, Frei A, Gong G, et al. 2010. On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent. Journal of Geophysical Research: Atmospheres, 115(D24): D24105. doi: 10.1029/2010JD014007
|
Gong G, Entekhabi D, Cohen J. 2002. A large-ensemble model study of the wintertime AO-NAO and the role of interannual snow perturbations. Journal of Climate, 15(23): 3488–3499. doi: 10.1175/1520-0442(2002)015<3488:ALEMSO>2.0.CO;2
|
Graham N E, Diaz H F. 2001. Evidence for intensification of North Pacific winter cyclones since 1948. Bulletin of the American Meteorological Society, 82(9): 1869–1894. doi: 10.1175/1520-0477(2001)082<1869:EFIONP>2.3.CO;2
|
Guo Yanjuan, Shinoda T, Lin Jialin, et al. 2017. Variations of northern hemisphere storm track and extratropical cyclone activity associated with the Madden-Julian oscillation. Journal of Climate, 30(13): 4799–4818. doi: 10.1175/JCLI-D-16-0513.1
|
Haak U, Ulbrich U. 1996. Verification of an objective cyclone climatology for the North Atlantic. Meteorologische Zeitschrift, 5, 24–30. https://doi.org/10.1127/metz/5/1996/24
|
Hall R, Erdélyi R, Hanna E, et al. 2015. Drivers of North Atlantic polar front jet stream variability. International Journal of Climatology, 35(8): 1697–1720. doi: 10.1002/joc.4121
|
Hannachi A, Jolliffe I T, Stephenson D B. 2007. Empirical orthogonal functions and related techniques in atmospheric science: a review. International Journal of Climatology, 27(9): 1119–1152. doi: 10.1002/joc.1499
|
Haurwitz M W, Brier G W. 1981. A critique of the superposed epoch analysis method: its application to solar-weather relations. Monthly Weather Review, 109(10): 2074–2079. doi: 10.1175/1520-0493(1981)109<2074:ACOTSE>2.0.CO;2
|
Haynes P H, McIntyre M E, Shepherd T G, et al. 1991. On the “Downward Control” of extratropical diabatic circulations by eddy-induced mean zonal forces. Journal of the Atmospheric Sciences, 48(4): 651–678. doi: 10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2
|
Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. doi: 10.1002/qj.3803
|
Hoskins B J, Hodges K I. 2002. New perspectives on the Northern Hemisphere winter storm tracks. Journal of the Atmospheric Sciences, 59(6), 1041−1061
|
Kalman D. 1996. A singularly valuable decomposition: the SVD of a matrix. The College Mathematics Journal, 27(1): 2–23. doi: 10.1080/07468342.1996.11973744
|
Kaplan A. 2011. Sidebar 1. 1: patterns and indices of climate variability [in “State of the Climate in 2010”]. BAMS, 92(6): S20-S25
|
Kidston J, Scaife A A, Hardiman S C, et al. 2015. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience, 8(6): 433–440. doi: 10.1038/NGEO2424
|
Knippertz P, Ulbrich U, Speth P. 2000. Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Climate Research, 15(2): 109–122
|
Kobashi F, Doi H, Iwasaka N. 2019. Sea surface cooling induced by extratropical cyclones in the subtropical North Pacific: Mechanism and interannual variability. Journal of Geophysical Research: Oceans, 124(3): 2179–2195
|
Laken B A, Čalogović J. 2013. Composite analysis with Monte Carlo methods: an example with cosmic rays and clouds. Journal of Space Weather and Space Climate, 3: A29. doi: 10.1051/swsc/2013051
|
Lee Y Y, Lim G H. 2012. Dependency of the North Pacific winter storm tracks on the zonal distribution of MJO convection. Journal of Geophysical Research: Atmospheres, 117(D14): D14101. doi: 10.1029/2011JD016417
|
Lionello P, Boldrin U, Giorgi F. 2008. Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. Climate Dynamics, 30, 657–671. https://doi.org/10.1007/s00382-007-0315-0
|
Luo Dehai, Cha Jing, Feldstein S B. 2012. Weather regime transitions and the interannual variability of the north Atlantic oscillation. Part I: a likely connection. Journal of the Atmospheric Sciences, 69(8): 2329–2346. doi: 10.1175/JAS-D-11-0289.1
|
Luo Dehai, Gong Tingting, Diao Yina. 2007. Dynamics of eddy-driven low-frequency dipole modes. Part III: meridional displacement of westerly jet anomalies during two phases of NAO. Journal of the Atmospheric Sciences, 64(9): 3232–3248. doi: 10.1175/JAS3998.1
|
Ma C G, Chang E K M. 2017. Impacts of storm-track variations on wintertime extreme weather events over the continental United States. Journal of Climate, 30(12): 4601–4624. doi: 10.1175/JCLI-D-16-0560.1
|
Marshall A G, Scaife A A, Ineson S. 2009. Enhanced seasonal prediction of European winter warming following volcanic eruptions. Journal of Climate, 22(23): 6168–6180. doi: 10.1175/2009JCLI3145.1
|
Maycock A C, Keeley S P E, Charlton-Perez A J, et al. 2011. Stratospheric circulation in seasonal forecasting models: implications for seasonal prediction. Climate Dynamics, 36(1): 309–321. doi: 10.1007/s00382-009-0665-x
|
Mendes D, Souza E P, Marengo J A, Mendes M C D. 2010. Climatology of extratropical cyclones over the South American-southern oceans sector. Theoretical and Applied Climatology, 100: 239–250, https://doi.org/10.1007/s00704-009-0161-6
|
Overland J E, Wang M. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 62(1), 1−9
|
Pinto J G, Spangehl T, Ulbrich U, et al. 2006. Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. Meteorologische Zeitschrift, 15(3): 279–291. doi: 10.1127/0941-2948/2006/0128
|
Pinto J G, Ulbrich U, Leckebusch G C, et al. 2007. Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dynamics, 29(2): 195–210. doi: 10.1007/s00382-007-0230-4
|
Raible C C. 2007. On the relation between extremes of midlatitude cyclones and the atmospheric circulation using ERA40. Geophysical Research Letters, 34(7): L07703. doi: 10.1029/2006GL029084
|
Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14): 4407. doi: 10.1029/2002JD002670
|
Sanders F, Gyakum J R. 1980. Synoptic-dynamic climatology of the “Bomb”. Monthly Weather Review, 108(10): 1589–1606. doi: 10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2
|
Scaife A A, Spangehl T, Fereday D R, et al. 2012. Climate change projections and stratosphere-troposphere interaction. Climate Dynamics, 38(9–10): 2089–2097. doi: 10.1007/s00382-011-1080-7
|
Serreze M C, Carse F, Barry R G, et al. 1997. Icelandic low cyclone activity: climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. Journal of Climate, 10(3): 453–464. doi: 10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2
|
Tian Di, Wood E F, Yuan Xing. 2017. CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrology and Earth System Sciences, 21(3): 1477–1490. doi: 10.5194/hess-21-1477-2017
|
Trenberth K E, Hurrell J W. 1994. Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics 9, 303–319.
|
Vihma T. 2014. Effects of arctic sea ice decline on weather and climate: a review. Surveys in Geophysics, 35(5): 1175–1214. doi: 10.1007/s10712-014-9284-0
|
Wallace J M, Lim G H, Blackmon M L. 1988. Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. Journal of the Atmospheric Sciences, 45(3): 439–462. doi: 10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2
|
Walter K, Graf H F. 2005. The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength. Atmospheric Chemistry and Physics, 5(1): 239–248. doi: 10.5194/acp-5-239-2005
|
Wu Bingyi, Zhang Renhe, D’Arrigo R, et al. 2013. On the relationship between winter sea ice and summer atmospheric circulation over Eurasia. Journal of Climate, 26(15): 5523–5536. doi: 10.1175/JCLI-D-12-00524.1
|
Xiang Baoqiang, Lin S J, Zhao Ming, et al. 2019. Subseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL model. Geophysical Research Letters, 46(1): 416–425. doi: 10.1029/2018GL081314
|
Yang Minghao, Li Chongyin, Luo Dehai, et al. 2022. Mechanical and thermal impacts of the Tibetan-Iranian plateau on the North Pacific storm track: numerical experiments by FGOALS-f3-L. Journal of Geophysical Research: Atmospheres, 127(11): e2021JD035659. doi: 10.1029/2021JD035659
|
Yau A M W, Chang E K M. 2020. Finding storm track activity metrics that are highly correlated with weather impacts. Part I: frameworks for evaluation and accumulated track activity. Journal of Climate, 33(23): 10169–10186. doi: 10.1175/JCLI-D-20-0393.1
|
Yoshida A, Asuma Y. 2004. Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. Monthly Weather Review, 132(5): 1121–1142. doi: 10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2
|
Zhang Yingxian, Ding Yihui, Li Qiaoping. 2012. Interdecadal variations of extratropical cyclone activities and storm tracks in the Northern Hemisphere. Chinese Journal of Atmospheric Sciences (in Chinese), 36(5): 912–928.
|
Zhang Yunqing, Held I M. 1999. A linear stochastic model of a GCM’s midlatitude storm tracks. Journal of the Atmospheric Sciences, 56(19): 3416–3435. doi: 10.1175/1520-0469(1999)056<3416:ALSMOA>2.0.CO;2
|