Volume 42 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Xiaoxiong Wang, Jordi Garcia-Orellana, Xiaogang Chen, Jianan Liu, Fenfen Zhang, Jianguo Qu, Zhuoyi Zhu, Jinzhou Du. Seasonal metal fluxes derived by the interaction of surface water and groundwater in an aquaculture estuary[J]. Acta Oceanologica Sinica, 2023, 42(8): 113-124. doi: 10.1007/s13131-023-2232-4
Citation: Xiaoxiong Wang, Jordi Garcia-Orellana, Xiaogang Chen, Jianan Liu, Fenfen Zhang, Jianguo Qu, Zhuoyi Zhu, Jinzhou Du. Seasonal metal fluxes derived by the interaction of surface water and groundwater in an aquaculture estuary[J]. Acta Oceanologica Sinica, 2023, 42(8): 113-124. doi: 10.1007/s13131-023-2232-4

Seasonal metal fluxes derived by the interaction of surface water and groundwater in an aquaculture estuary

doi: 10.1007/s13131-023-2232-4
Funds:  The National Key Research and Development Program of China under contract No. 2018YFD0900702; the National Natural Science Foundation of China under contract Nos 41976040, 41976041 and 42006152.
More Information
  • Corresponding author: E-mail address: ffzhang@sklec.ecnu.edu.cn
  • Received Date: 2023-02-16
  • Accepted Date: 2023-06-16
  • Available Online: 2023-08-28
  • Publish Date: 2023-08-31
  • Submarine groundwater discharge (SGD) plays a major role as a conveyor of metals to coastal waters. However, the seasonal change of metal fluxes derived through SGD is unclear. Here, we evaluated the behaviours and fluxes of trace metals (Mn, Fe, Ba, Pb, U, Cr, Zn, Cu) in an estuary under different seasonal conditions. The behaviours of trace metals revealed that SGD was the source of Mn (3.51 mmol/(m2·d)), Fe (0.174 mmol/(m2·d)) and Ba (0.024 mmol/(m2·d)), but the Cu sink (−0.55 μmol/(m2·d)) and other metals exhibited a seasonal source‒sink conversion. The seasonal variation of dissolved organic matter and the fresh groundwater proportion in subterranean estuaries may have an important effect on metals fluxes especially for the Fe, Mn and Ba. Our result shows that the single seasonal metal fluxes estimation applied to the annual scale will cause a large deviation, up to 3.6 times for Fe, 5.5 times for Mn, and 15 times for Ba. Therefore, the influence of seasonal fluctuations on SGD-derived metal fluxes cannot be ignored, and our findings will be important for comprehending the metal budget and cycle in nearshore environment.
  • loading
  • Alorda-Kleinglass A, Garcia-Orellana J, Rodellas V, et al. 2019. Remobilization of dissolved metals from a coastal mine tailing deposit driven by groundwater discharge and porewater exchange. Science of the Total Environment, 688: 1359–1372. doi: 10.1016/j.scitotenv.2019.06.224
    Amato E D, Simpson S L, Remaili T M, et al. 2016. Assessing the effects of bioturbation on metal bioavailability in contaminated sediments by diffusive gradients in thin films (DGT). Environmental Science & Technology, 50(6): 3055–3064. doi: 10.1021/acs.est.5b04995
    Beck A J, Cochran J K, Sañudo-Wilhelmy S A. 2009. Temporal trends of dissolved trace metals in Jamaica Bay, NY: importance of wastewater input and submarine groundwater discharge in an urban estuary. Estuaries and Coasts, 32(3): 535–550. doi: 10.1007/s12237-009-9140-5
    Berelson W, McManus J, Coale K, et al. 2003. A time series of benthic flux measurements from Monterey Bay, CA. Continental Shelf Research, 23(5): 457–481. doi: 10.1016/s0278-4343(03)00009-8
    Burnett W C, Bokuniewicz H, Huettel M, et al. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1): 3–33. doi: 10.1023/B:Biog.0000006066.21240.53
    Burnett W C, Dulaiova H. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity, 69(1–2): 21–35,
    Charette M A, Sholkovitz E R. 2006. Trace element cycling in a subterranean estuary: part 2. Geochemistry of the pore water. Geochimica et Cosmochimica Acta, 70(4): 811–826. doi: 10.1016/j.gca.2005.10.019
    Charette M A, Sholkovitz E R, Hansel C M. 2005. Trace element cycling in a subterranean estuary: part 1. Geochemistry of the permeable sediments. Geochimica et Cosmochimica Acta, 69(8): 2095–2109. doi: 10.1016/j.gca.2004.10.024
    Chen Xiaogang, Zhang Fenfen, Lao Yanling, et al. 2018. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?. Journal of Geophysical Research: Oceans, 123(9): 6962–6979. doi: 10.1029/2018jc014448
    de Souza Machado A A, Spencer K, Kloas W, et al. 2016. Metal fate and effects in estuaries: a review and conceptual model for better understanding of toxicity. Science of the Total Environment, 541: 268–281. doi: 10.1016/j.scitotenv.2015.09.045
    Degenhardt J, Merder J, Heyerhoff B, et al. 2021. Cross-shore and depth zonations in bacterial diversity are linked to age and source of dissolved organic matter across the intertidal area of a sandy beach. Microorganisms, 9(8): 1720. doi: 10.3390/microorganisms9081720
    Du Laing G, Meers E, Dewispelaere M, et al. 2009. Effect of water table level on metal mobility at different depths in wetland soils of the scheldt estuary (belgium). Water, Air, and Soil Pollution, 202(1): 353–367,
    Gonneea M E, Charette M A, Liu Qian, et al. 2014. Trace element geochemistry of groundwater in a Karst subterranean estuary (Yucatan Peninsula, Mexico). Geochimica et Cosmochimica Acta, 132: 31–49. doi: 10.1016/j.gca.2014.01.037
    Hagedorn B, Tsuda M. 2022. Radon and salinity mass balance constraints on groundwater recharge on a semi-arid island (Catalina, California). Water, 14(7): 1068. doi: 10.3390/w14071068
    Hao Youyou. 2021. Distribution characteristics and influencing factors of biogenic elements in the Aojiang Estuary and adjacent waters under the background of tidal flat shellfish aquaculture (in Chinese)[dissertation]. Shanghai: East China Normal University
    Hong Qingquan, Cai Pinghe, Geibert W, et al. 2018. Benthic fluxes of metals into the Pearl River Estuary based on 224Ra/228Th disequilibrium: from alkaline earth (Ba) to redox sensitive elements (U, Mn, Fe). Geochimica et Cosmochimica Acta, 237: 223–239. doi: 10.1016/j.gca.2018.06.036
    Hsu S C, Wong G T F, Gong G C, et al. 2010. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Marine Chemistry, 120(1–4): 116–127,
    Kim I, Kim G. 2011. Large fluxes of rare earth elements through submarine groundwater discharge (SGD) from a volcanic island, Jeju, Korea. Marine Chemistry, 127(1–4): 12–19,
    Kim I, Kim G. 2015. Role of colloids in the discharge of trace elements and rare earth elements from coastal groundwater to the ocean. Marine Chemistry, 176: 126–132. doi: 10.1016/j.marchem.2015.08.009
    Li Maomao, Kong Fanlong, Li Yue, et al. 2020. Ecological indication based on source, content, and structure characteristics of dissolved organic matter in surface sediment from Dagu River Estuary, China. Environmental Science and Pollution Research, 27(36): 45499–45512. doi: 10.1007/s11356-020-10456-1
    Luijendijk E, Gleeson T, Moosdorf N. 2020. Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nature Communications, 11(1): 1260. doi: 10.1038/s41467-020-15064-8
    Mayfield K K, Eisenhauer A, Santiago Ramos D P, et al. 2021. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba. Nature Communications, 12(1): 148. doi: 10.1038/s41467-020-20248-3
    Mendiguchía C, Moreno C, Mánuel-Vez M P, et al. 2006. Preliminary investigation on the enrichment of heavy metals in marine sediments originated from intensive aquaculture effluents. Aquaculture, 254(1–4): 317–325,
    Moosdorf N, Böttcher M E, Adyasari D, et al. 2021. A state-of-the-art perspective on the characterization of subterranean estuaries at the regional scale. Frontiers in Earth Science, 9: 601293. doi: 10.3389/feart.2021.601293
    Nakajima T, Sugimoto R, Tominaga O, et al. 2018. Fresh and recirculated submarine groundwater discharge evaluated by geochemical tracers and a seepage meter at two sites in the Seto Inland Sea, Japan. Hydrology, 5(4): 61. doi: 10.3390/hydrology5040061
    Nimptsch J, Woelfl S, Osorio S, et al. 2015. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams. Science of the Total Environment, 537: 129–138. doi: 10.1016/j.scitotenv.2015.07.160
    O’Connor A E, Canuel E A, Beck A J. 2022. Drivers and seasonal variability of redox-sensitive metal chemistry in a shallow subterranean estuary. Frontiers in Environmental Science, 9: 613191. doi: 10.3389/fenvs.2021.613191
    O’Connor A E, Krask J L, Canuel E A, et al. 2018. Seasonality of major redox constituents in a shallow subterranean estuary. Geochimica et Cosmochimica Acta, 224: 344–361. doi: 10.1016/j.gca.2017.10.013
    O’Connor A E, Luek J L, McIntosh H, et al. 2015. Geochemistry of redox-sensitive trace elements in a shallow subterranean estuary. Marine Chemistry, 172: 70–81. doi: 10.1016/j.marchem.2015.03.001
    Peng Tong, Zhu Zhuoyi, Du Jinzhou, et al. 2021. Effects of nutrient-rich submarine groundwater discharge on marine aquaculture: a case in Lianjiang, East China Sea. Science of the Total Environment, 786: 147388. doi: 10.1016/j.scitotenv.2021.147388
    Prabhu A J, Schrama J W, Kaushik S J. 2016. Mineral requirements of fish: a systematic review. Reviews in Aquaculture, 8(2): 172–219. doi: 10.1111/raq.12090
    Ruiz-González C, Rodellas V, Garcia-Orellana J. 2021. The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiology Reviews, 45(5): fuab010. doi: 10.1093/femsre/fuab010
    Santana-Casiano J M, González-Dávila M, González A G, et al. 2014. Characterization of phenolic exudates from Phaeodactylum tricornutum and their effects on the chemistry of Fe(II)–Fe(III). Marine Chemistry, 158: 10–16. doi: 10.1016/j.marchem.2013.11.001
    Santos I R, Burnett W C, Chanton J, et al. 2009. Land or ocean?: assessing the driving forces of submarine groundwater discharge at a coastal site in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 114(C4): C04012. doi: 10.1029/2008jc005038
    Santos I R, Burnett W C, Misra S, et al, 2011a. Uranium and barium cycling in a salt wedge subterranean estuary: the influence of tidal pumping. Chemical Geology, 287(1–2): 114–123,
    Santos I R, Chen Xiaogang, Lecher A L, et al. 2021. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5): 307–323. doi: 10.1038/s43017-021-00152-0
    Santos I R, Lechuga-Deveze C, Peterson R N, et al. 2011b. Tracing submarine hydrothermal inputs into a coastal bay in Baja California using radon. Chemical Geology, 282(1–2): 1–10,
    Santos I R, Peterson R N, Eyre B D, et al. 2010. Significant lateral inputs of fresh groundwater into a stratified tropical estuary: evidence from radon and radium isotopes. Marine Chemistry, 121(1–4): 37–48,
    Shahid M, Pinelli E, Dumat C. 2012. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials, 219–220: 1–12,
    Shi Xiangming, Wei Lin, Hong Qingquan, et al. 2019. Large benthic fluxes of dissolved iron in China coastal seas revealed by 224Ra/228Th disequilibria. Geochimica et Cosmochimica Acta, 260: 49–61. doi: 10.1016/j.gca.2019.06.026
    Shine J P, Ika R, Ford T E. 1998. Relationship between oxygen consumption and sediment-water fluxes of heavy metals in coastal marine sediments. Environmental Toxicology and Chemistry, 17(11): 2325–2337. doi: 10.1002/etc.5620171125
    Smaal A C, Vonck A P M A. 1997. Seasonal variation in C, N and P budgets and tissue composition of the mussel Mytilus edulis. Marine Ecology Progress Series, 153: 167–179. doi: 10.3354/meps153167
    Taniguchi M, Ishitobi T, Shimada J. 2006. Dynamics of submarine groundwater discharge and freshwater-seawater interface. Journal of Geophysical Research: Oceans, 111(C1): C01008. doi: 10.1029/2005jc002924
    Trezzi G, Garcia-Orellana J, Rodellas V, et al. 2016. Submarine groundwater discharge: a significant source of dissolved trace metals to the North Western Mediterranean Sea. Marine Chemistry, 186: 90–100. doi: 10.1016/j.marchem.2016.08.004
    Wang Xiaoxiong, Chen Xiaogang, Liu Jianan, et al. 2021. Radon traced seasonal variations of water mixing and accompanying nutrient and carbon transport in the Yellow-Bohai Sea. Science of the Total Environment, 784: 147161. doi: 10.1016/j.scitotenv.2021.147161
    Wang Qianqian, Li Hailong, Zhang Yan, et al. 2019. Evaluations of submarine groundwater discharge and associated heavy metal fluxes in Bohai Bay, China. Science of the Total Environment, 695: 133873. doi: 10.1016/j.scitotenv.2019.133873
    Wang Xiaona, Wu Ying, Jiang Zengjie, et al. 2017. Quantifying aquaculture-derived dissolved organic matter in the mesocosms of Sanggou Bay using excitation-emission matrix spectra and parallel factor analysis. Journal of the World Aquaculture Society, 48(6): 909–926. doi: 10.1111/jwas.12409
    Waska H, Brumsack H J, Massmann G, et al. 2019. Inorganic and organic iron and copper species of the subterranean estuary: origins and fate. Geochimica et Cosmochimica Acta, 259: 211–232. doi: 10.1016/j.gca.2019.06.004
    Yuan Huamao, Song Jinming, Li Xuegang, et al. 2012. Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea. Marine Pollution Bulletin, 64(10): 2151–2159. doi: 10.1016/j.marpolbul.2012.07.040
    Zhang Jing, Kattner G, Koch B P. 2019. Interactions of trace elements and organic ligands in seawater and implications for quantifying biogeochemical dynamics: a review. Earth-Science Reviews, 192: 631–649. doi: 10.1016/j.earscirev.2019.03.007
    Zhang Yan, Li Hailong, Wang Xuejing, et al. 2016. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn. Journal of Hydrology, 533: 103–113. doi: 10.1016/j.jhydrol.2015.11.027
    Zhang Yan, Wang Xuejing, Xue Yan, et al. 2022. Advances in the study of submarine groundwater discharge (SGD) in China. Science China: Earth Sciences, 65(10): 1948–1960. doi: 10.1007/s11430-021-9946-x
  • Wang Xiaoxiong Supporting information.docx
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (171) PDF downloads(15) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint