Volume 43 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Pengcheng Li, Hu Zhang, Chongliang Zhang, Binduo Xu, Yupeng Ji, Yiping Ren, Ying Xue. Temporal variations of food web in a marine bay ecosystem based on LIM-MCMC model[J]. Acta Oceanologica Sinica, 2024, 43(8): 79-88. doi: 10.1007/s13131-023-2273-8
Citation: Pengcheng Li, Hu Zhang, Chongliang Zhang, Binduo Xu, Yupeng Ji, Yiping Ren, Ying Xue. Temporal variations of food web in a marine bay ecosystem based on LIM-MCMC model[J]. Acta Oceanologica Sinica, 2024, 43(8): 79-88. doi: 10.1007/s13131-023-2273-8

Temporal variations of food web in a marine bay ecosystem based on LIM-MCMC model

doi: 10.1007/s13131-023-2273-8
Funds:  The Shandong Provincial Natural Science Foundation under contract No. ZR2023MD096; the National Key R&D Program of China under contract Nos 2018YFD0900904 and 2018YFD0900906.
More Information
  • Corresponding author: E-mail: xueying@ouc.edu.cn
  • Received Date: 2023-08-16
  • Accepted Date: 2023-09-28
  • Available Online: 2024-04-30
  • Publish Date: 2024-08-25
  • Climate change has led to significant fluctuations in marine ecosystems, including alterations in the structure and function of food webs and ecosystem status. Coastal ecosystems are critical to the functioning of the earth’s life-supporting systems. However, temporal variations in most of these ecosystems have remained unclear so far. In this study, we employed a linear inverse model with Markov Chain Monte Carlo (LIM-MCMC) combined with ecological network analysis to reveal the temporal variations of the food web in Haizhou Bay of China. Food webs were constructed based on diet composition data in this ecosystem during the year of 2011 and 2018. Results indicated that there were obvious temporal variations in the composition of food webs in autumn of 2011 and 2018. The number of prey and predators for most species in food web decreased in 2018 compared with 2011, especially for Trichiurus lepturus, zooplankton, Amblychaeturichthys hexanema, and Loligo sp. Ecological network analysis showed that the complexity of food web structure could be reflected by comprehensive analysis of compartmentalized indicators. Haizhou Bay ecosystem was more mature and stable in 2011, while the ecosystem’s self-sustainability and recovery from disturbances were accelerated from 2011 to 2018. These findings contribute to our understanding of the dynamics of marine ecosystems and highlight the importance of comprehensive analysis of marine food webs. This work provides a framework for assessing and comparing temporal variations in marine ecosystems, which provides essential information and scientific guidance for the Ecosystem-based Fisheries Management.
  • loading
  • Allen A P, Gillooly J F, Brown J H. 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology, 19(2): 202–213, doi: 10.1111/j.1365-2435.2005.00952.x
    Anh P V, Everaert G, Goethals P, et al. 2015. Production and food web efficiency decrease as fishing activity increases in a coastal ecosystem. Estuarine, Coastal and Shelf Science, 165: 226–236
    Beaugrand G, Edwards M, Raybaud V, et al. 2015. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nature Climate Change, 5(7): 695–701, doi: 10.1038/nclimate2650
    Bondavalli C, Bodini A, Rossetti G, et al. 2006. Detecting stress at the whole-ecosystem level: the case of a mountain lake (Lake Santo, Italy). Ecosystems, 9(5): 768–787, doi: 10.1007/s10021-005-0065-y
    Borrett S R. 2013. Throughflow centrality is a global indicator of the functional importance of species in ecosystems. Ecological Indicators, 32: 182–196, doi: 10.1016/j.ecolind.2013.03.014
    Casini M, Lövgren J, Hjelm J, et al. 2008. Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proceedings of the Royal Society B: Biological Sciences, 275(1644): 1793–1801, doi: 10.1098/rspb.2007.1752
    Ceballos G, Ehrlich P R, Barnosky A D, et al. 2015. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1(5): e1400253, doi: 10.1126/sciadv.1400253
    Chaalali A, Beaugrand G, Raybaud V, et al. 2016. From species distributions to ecosystem structure and function: a methodological perspective. Ecological Modelling, 334: 78–90, doi: 10.1016/j.ecolmodel.2016.04.022
    Chaalali A, Saint-Béat B, Lassalle G, et al. 2015. A new modeling approach to define marine ecosystems food-web status with uncertainty assessment. Progress in Oceanography, 135: 37–47, doi: 10.1016/j.pocean.2015.03.012
    Cheung W W L, Lam V W Y, Sarmiento J L, et al. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10(3): 235–251, doi: 10.1111/j.1467-2979.2008.00315.x
    Cloern J E, Abreu P C, Carstensen J, et al. 2016. Human activities and climate variability drive fast-paced change across the world’s estuarine–coastal ecosystems. Global Change Biology, 22(2): 513–529, doi: 10.1111/gcb.13059
    Daniels R M, Richardson T L, Ducklow H W. 2006. Food web structure and biogeochemical processes during oceanic phytoplankton blooms: an inverse model analysis. Deep Sea Research Part II: Topical Studies in Oceanography, 53(5–7): 532–554, doi: 10.1016/j.dsr2.2006.01.016
    De Laender F, Taub F B, Janssen C R. 2011. Ecosystem functions and densities of contributing functional groups respond in a different way to chemical stress. Environmental Toxicology and Chemistry, 30(12): 2892–2898, doi: 10.1002/etc.698
    De Laender F, van Oevelen D, Soetaert K, et al. 2010. Carbon transfer in a herbivore- and microbial loop-dominated pelagic food webs in the southern Barents Sea during spring and summer. Marine Ecology Progress Series, 398: 93–107, doi: 10.3354/meps08335
    DeLong J P, Gilbert B, Shurin J B, et al. 2015. The body size dependence of trophic cascades. The American Naturalist, 185(3): 354–366, doi: 10.1086/679735
    Doney S C, Sailley S F. 2013. When an ecological regime shift is really just stochastic noise. Proceedings of the National Academy of Sciences of the United States of America, 110(7): 2438–2439
    Dubois M, Gascuel D, Coll M, et al. 2019. Recovery debts can be revealed by ecosystem network-based approaches. Ecosystems, 22(3): 658–676, doi: 10.1007/s10021-018-0294-5
    Dulvy N K, Rogers S I, Jennings S, et al. 2008. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology, 45(4): 1029–1039, doi: 10.1111/j.1365-2664.2008.01488.x
    Dunne J A. 2009. Food webs. In: Meyers R A, ed. Encyclopedia of Complexity and Systems Science. New York: Springer-Verlag, 3661–3682
    Eskuche-Keith P, Hill S L, Hollyman P, et al. 2023. Trophic structuring of modularity alters energy flow through marine food webs. Frontiers in Marine Science, 9: 1046150, doi: 10.3389/fmars.2022.1046150
    Fath B D, Asmus H, Asmus R, et al. 2019. Ecological network analysis metrics: the need for an entire ecosystem approach in management and policy. Ocean & Coastal Management, 174: 1–14
    Fath B D, Patten B C. 1998. Network synergism: emergence of positive relations in ecological systems. Ecological Modelling, 107(2–3): 127–143, doi: 10.1016/S0304-3800(97)00213-5
    Fath B D, Patten B C. 1999a. Quantifying resource homogenization using network flow analysis. Ecological Modelling, 123(2–3): 193–205, doi: 10.1016/S0304-3800(99)00130-1
    Fath B D, Patten B C. 1999b. Review of the foundations of network environ analysis. Ecosystems, 2(2): 167–179, doi: 10.1007/s100219900067
    Feng Jianfeng, Zhu Lin, Wang Hongli. 2010. Study on characters of coastal ecosystem in Bohai Bay with EwE. Marine Environmental Science (in Chinese), 29(6): 781–784,803
    Fernández-González C, Tarran G A, Schuback N, et al. 2022. Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic. Communications Biology, 5(1): 1035, doi: 10.1038/s42003-022-03971-z
    Fetahi T, Mengistou S. 2007. Trophic analysis of Lake Awassa (Ethiopia) using mass-balance Ecopath model. Ecological Modelling, 201(3–4): 398–408, doi: 10.1016/j.ecolmodel.2006.10.010
    Finn J T. 1980. Flow analysis of models of the Hubbard Brook ecosystem. Ecology, 61(3): 562–571, doi: 10.2307/1937422
    Forster J, Hirst A G, Atkinson D. 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences of the United States of America, 109(47): 19310–19314
    Friedland K D, Langan J A, Large S I, et al. 2020. Changes in higher trophic level productivity, diversity and niche space in a rapidly warming continental shelf ecosystem. Science of the Total Environment, 704: 135270, doi: 10.1016/j.scitotenv.2019.135270
    Froese R, Pauly D. 2023. FishBase. World Wide Web electronic publication. http://www.fishbase.org [2023–02–17]
    Griffin L P, Adam P A, Fordham G, et al. 2021. Cooperative monitoring program for a catch-and-release recreational fishery in the Alphonse Island group, Seychelles: From data deficiencies to the foundation for science and management. Ocean & Coastal Management, 210: 105681
    Griffiths S P, Young J W, Lansdell M J, et al. 2010. Ecological effects of longline fishing and climate change on the pelagic ecosystem off eastern Australia. Reviews in Fish Biology and Fisheries, 20(2): 239–272, doi: 10.1007/s11160-009-9157-7
    Han Dongyan, Xue Ying, Zhang Chongliang, et al. 2017. A mass balanced model of trophic structure and energy flows of a semi-closed marine ecosystem. Acta Oceanologica Sinica, 36(10): 60–69, doi: 10.1007/s13131-017-1071-6
    Hessen D O, Anderson T R. 2008. Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications. Limnology and Oceanography, 53(4): 1685–1696, doi: 10.4319/lo.2008.53.4.1685
    Horn S, De La Vega C, Asmus R, et al. 2019. Impact of birds on intertidal food webs assessed with ecological network analysis. Estuarine, Coastal and Shelf Science, 219: 107–119
    Johnson R W, McElhaney J. 2009. Postherpetic neuralgia in the elderly. International Journal of Clinical Practice, 63(9): 1386–1391, doi: 10.1111/j.1742-1241.2009.02089.x
    Julius R J, Novitsky M A, Dubin W R. 2009. Medication adherence: a review of the literature and implications for clinical practice. Journal of Psychiatric Practice, 15(1): 34–44, doi: 10.1097/01.pra.0000344917.43780.77
    Kones J K, Soetaert K, van Oevelen D, et al. 2009. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecological Modelling, 220(3): 370–382, doi: 10.1016/j.ecolmodel.2008.10.012
    Krause A E, Frank K A, Mason D M, et al. 2003. Compartments revealed in food-web structure. Nature, 426(6964): 282–285, doi: 10.1038/nature02115
    Latham L G. 2006. Network flow analysis algorithms. Ecological Modelling, 192(3–4): 586–600, doi: 10.1016/j.ecolmodel.2005.07.029
    Layman C A, Giery S T, Buhler S, et al. 2015. A primer on the history of food web ecology: fundamental contributions of fourteen researchers. Food Webs, 4: 14–24, doi: 10.1016/j.fooweb.2015.07.001
    Leguerrier D, Degré D, Niquil N. 2007. Network analysis and inter-ecosystem comparison of two intertidal mudflat food webs (Brouage Mudflat and Aiguillon Cove, SW France). Estuarine, Coastal and Shelf Science, 74(3): 403–418
    Li Rui, Han Zhen, Cheng Heqin, et al. 2010. A preliminary study on biological resources energy flows bed on the ECOPATH model in the East China Sea. Resources Science (in Chinese), 32(4): 600–605
    Li Zhonglu, Shan Xiujuan, Jin Xianshi, et al. 2015. Interannual variations in the biological characteristics, distribution and stock density of anglerfish Lophius litulon in the central and southern Yellow Sea. Acta Ecologica Sinica (in Chinese), 35(12): 4007–4015
    Li Xuetong, Xu Binduo, Xue Ying, et al. 2021. Variation in the β diversity of fish species in Haizhou Bay. Journal of Fishery Sciences of China (in Chinese), 28(4): 451–459
    Li Mingkun, Zhang Chongliang, Xu Binduo, et al. 2020. A comparison of GAM and GWR in modelling spatial distribution of Japanese mantis shrimp (Oratosquilla oratoria) in coastal waters. Estuarine, Coastal and Shelf Science, 244: 106928
    Lin Qun, Jin Xianshi, Zhang Bo. 2013. Trophic interactions, ecosystem structure and function in the southern Yellow Sea. Chinese Journal of Oceanology and Limnology, 31(1): 46–58, doi: 10.1007/s00343-013-2013-6
    Lin Qun, Jin Xianshi, Zhang Bo, et al. 2009. Comparative study on the changes of the Bohai Sea ecosystem structure based on Ecopath model between ten years. Acta Ecologica Sinica (in Chinese), 29(7): 3613–3620
    Lin Qun, Wang Jun, Li Zhongyi, et al. 2018. Ecological carrying capacity of shellfish in the Yellow River estuary and its adjacent waters. Chinese Journal of Applied Ecology (in Chinese), 29(9): 3131–3138
    Lin Qun, Wang Jun, Yuan Wei, et al. 2016. Effects of fishing and environmental change on the ecosystem of the Bohai Sea. Journal of Fishery Sciences of China (in Chinese), 23(3): 619–629
    Liu Hongyan, Yang Chaojie, Zhang Peidong, et al. 2019. An Ecopath evaluation of system structure and function for the Laoshan Bay artificial reef zone ecosystem. Acta Ecologica Sinica (in Chinese), 39(11): 3926–3936
    Liu Zhihao, Han Dongyan, Gao Chunxia, et al. 2021. Feeding habits of Bombay ducks (Harpadon nehereus) in the offshore waters of southern Zhejiang, based on predator CPUE weighting. Journal of Fishery Sciences of China (in Chinese), 28(4): 482–492
    Marquis E, Niquil N, Delmas D, et al. 2007. Inverse analysis of the planktonic food web dynamics related to phytoplankton bloom development on the continental shelf of the Bay of Biscay, French coast. Estuarine, Coastal and Shelf Science, 73(1–2): 223–235
    Mukherjee J, Scharler U M, Fath B D, et al. 2015. Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations. Ecological Modelling, 306: 160–173, doi: 10.1016/j.ecolmodel.2014.10.027
    Navia A F, Maciel-Zapata S R, González-Acosta A F, et al. 2019. Importance of weak trophic interactions in the structure of the food web in La Paz Bay, southern Gulf of California: a topological approach. Bulletin of Marine Science, 95(2): 199–215, doi: 10.5343/bms.2018.0043
    Nuttall M A, Jordaan A, Cerrato R M, et al. 2011. Identifying 120 years of decline in ecosystem structure and maturity of Great South Bay, New York using the Ecopath modelling approach. Ecological Modelling, 222(18): 3335–3345, doi: 10.1016/j.ecolmodel.2011.07.004
    Olsen Y, Andersen T, Gismervik I, et al. 2007. Protozoan and metazoan zooplankton-mediated carbon flows in nutrient-enriched coastal planktonic communities. Marine Ecology Progress Series, 331: 67–83, doi: 10.3354/meps331067
    Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37: 637–669
    Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918): 37–42, doi: 10.1038/nature01286
    Perry A L, Low P J, Ellis J R, et al. 2005. Climate change and distribution shifts in marine fishes. Science, 308(5730): 1912–1915, doi: 10.1126/science.1111322
    Pimm S L, Lawton J H. 1980. Are food webs divided into compartments?. The Journal of Animal Ecology, 49(3): 879–898, doi: 10.2307/4233
    Poloczanska E S, Brown C J, Sydeman W J, et al. 2013. Global imprint of climate change on marine life. Nature Climate Change, 3(10): 919–925, doi: 10.1038/nclimate1958
    Ren Xiaoming, Liu Yang, Xu Binduo, et al. 2020. Ecosystem structure in the Haizhou Bay and adjacent waters based on Ecopath model. Haiyang Xuebao (in Chinese), 42(6): 101–109
    Rooney N, McCann K S. 2012. Integrating food web diversity, structure and stability. Trends in Ecology & Evolution, 27(1): 40–46
    Rose K A, Allen J I, Artioli Y, et al. 2010. End-to-end models for the analysis of marine ecosystems: Challenges, issues, and next steps. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science, 2(1): 115–130
    Rybarczyk H, Elkaı̈m B. 2003. An analysis of the trophic network of a macrotidal estuary: the Seine Estuary (Eastern Channel, Normandy, France). Estuarine, Coastal and Shelf Science, 58(4): 775–791
    Safi G, Giebels D, Arroyo N L, et al. 2019. Vitamine ENA: a framework for the development of ecosystem-based indicators for decision makers. Ocean & Coastal Management, 174: 116–130
    Savenkoff C, Castonguay M, Chabot D, et al. 2007. Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: Evidence of a fishery-induced regime shift?. Estuarine, Coastal and Shelf Science, 73(3–4): 711–724
    Sheng Fuli, Zeng Xiaoqi, Xue Ying. 2009. Study on propagation and feeding habits of Oratosquilla oratoria in the inshore waters of Qingdao. Periodical of Ocean University of China (in Chinese), 39(S1): 326–332
    Soetaert K, van den Meersche K, van Oevelen D, et al. 2009. limSolve: Solving linear inverse models.https://cran.r-project.org/web//packages/limSolve/limSolve.pdf [2022–10–13]
    Soetaert K, van Oevelen D. 2009. LIM: linear inverse model examples and solution methods.https://cran.r-project.org/web/packages/LIM/index.html [2022–05–11]
    Song Yehui, Xue Ying, Xu Binduo, et al. 2020. Composition of food and niche overlap of three Sciaenidae species in Haizhou Bay. Journal of Fisheries of China (in Chinese), 40(12): 2017–2027
    Van Oevelen D, van den Meersche K, Meysman F J R, et al. 2010. Quantifying food web flows using linear inverse models. Ecosystems, 13(1): 32–45, doi: 10.1007/s10021-009-9297-6
    Vasconcellos M, Mackinson S, Sloman K, et al. 1997. The stability of trophic mass-balance models of marine ecosystems: a comparative analysis. Ecological Modelling, 100(1–3): 125–134, doi: 10.1016/S0304-3800(97)00150-6
    Vasseur D A, McCann K S. 2005. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. The American Naturalist, 166(2): 184–198, doi: 10.1086/431285
    Vézina A F, Platt T. 1988. Food web dynamics in the ocean. I. Best-estimates of flow networks using inverse methods. Marine Ecology Progress Series, 42(3): 269–287
    Wang Yuanchao, Liang Cui, Xian Weiwei, et al. 2018. Ecopath based dynamic analyses of energy flows of Yangtze estuary and its adjacent waters. Marine Sciences (in Chinese), 42(5): 54–67
    Wang Sai, Wang Lin, Zheng Yu, et al. 2019. Application of mass-balance modelling to assess the effects of ecological restoration on energy flows in a subtropical reservoir, China. Science of the Total Environment, 664: 780–792, doi: 10.1016/j.scitotenv.2019.01.334
    Wei Jingjing. 2015. A preliminary study on microbial community structures and their influencing factors in the Western Pacific waters (in Chinese) [dissertation]. Xiamen: Xiamen University
    Wu Xiaotong, Ding Xiangxiang, Jiang Xu, et al. 2019. Variations in the mean trophic level and large fish index of fish community in Haizhou Bay, China. Chinese Journal of Applied Ecology (in Chinese), 30(8): 2829–2836
    Xing Lei, Chen Yong, Tanaka K R, et al. 2022. Evaluating the hatchery program of a highly exploited shrimp stock (Fenneropenaeus chinensis) in a temperate marine ecosystem. Frontiers in Marine Science, 9: 789805, doi: 10.3389/fmars.2022.789805
    Xu Binduo, Ren Yiping, Chen Yong, et al. 2015. Optimization of stratification scheme for a fishery-independent survey with multiple objectives. Acta Oceanologica Sinica, 34(12): 154–169, doi: 10.1007/s13131-015-0739-z
    Xu Congjun, Sui Haozhi, Xu Binduo, et al. 2021. Energy flows in the Haizhou Bay food web based on the LIM-MCMC model. Journal of Fishery Sciences of China (in Chinese), 28(1): 66–78
    Xu Xue, Tang Weiyao, Wang Yingbin. 2019. Releasing capacity of Portunus trituberculatus enhancement in Zhoushan fishing ground and Yangtze river estuary fishing ground and their adjacent waters. South China Fisheries Science (in Chinese), 15(3): 126–132
    Xu Chao, Wang Sikai, Zhao Feng, et al. 2018. Trophic structure and energy flow of the Yangtze Estuary ecosystem based on the analysis with Ecopath model. Marine Fisheries (in Chinese), 40(3): 309–318
    Xue Ying. 2005. Studies on the feeding ecology of dominant fishes and food web of fishes in the central and southern Yellow Sea (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Yang Tao, Shan Xiujuan, Jin Xianshi, et al. 2018. Long-term changes in keystone species in fish community in spring in Laizhou Bay. Progress in Fishery Sciences (in Chinese), 39(1): 1–11
    Yin Jie, Xu Jun, Xue Ying, et al. 2021. Evaluating the impacts of El Niño events on a marine bay ecosystem based on selected ecological network indicators. Science of the Total Environment, 763: 144205, doi: 10.1016/j.scitotenv.2020.144205
    Yoneda M, Tokimura M, Fujita H, et al. 2001. Reproductive cycle, fecundity, and seasonal distribution of the anglerfish Lophius litulon in the East China and Yellow seas. Fishery Bulletin, 99(2): 356–370
    Yuan Xingwei, Jiang Yazhou, Gao Xiaodi, et al. 2023. Spatiotemporal distribution of Lophius litulon in the southern Yellow Sea and East China Sea. Chinese Journal of Applied Ecology (in Chinese), 34(2): 519–526
    Yuan Jianmei, Zhang Hu, Ben Chengkai, et al. 2018. Macrobenthic community composition and it’s secondary productivity in the Haizhou Bay. Marine Fisheries (in Chinese), 40(1): 19–26
    Yvon-Durocher G, Montoya J M, Trimmer M, et al. 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology, 17(4): 1681–1694, doi: 10.1111/j.1365-2486.2010.02321.x
    Zhang Chongliang, Chen Yong, Ren Yiping. 2015. Assessing uncertainty of a multispecies size-spectrum model resulting from process and observation errors. ICES Journal of Marine Science, 72(8): 2223–2233, doi: 10.1093/icesjms/fsv086
    Zhang Wuchang, Zhang Cuixia, Wang Rong, et al. 2011. Grazing pressure of microzooplankton on phytoplankton in spring and autumn in the Yellow Sea and East China Sea. Marine Sciences (in Chinese), 35(1): 36–39
  • Li Pengcheng_Supplementary material.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (150) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return