2014 Vol. 33, No. 7

Display Method:
contents
2014年第7期整期打包下载
2014, 33(7): .
Abstract:
Articles
Responses of the circulation and water mass in the Beibu Gulf to the seasonal forcing regimes
GAO Jingsong, SHI Maochong, CHEN Bo, GUO Peifang, ZHAO Dongliang
2014, 33(7): 1-11. doi: 10.1007/s13131-014-0506-6
Abstract:
In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baroclinic model that was verified by observations, the formation mechanisms were revealed: the circulation in the northern Beibu Gulf was triggered by the monsoon wind throughout a year;whereas the southern gulf circulation was driven by the monsoon wind and South China Sea (SCS) circulation in winter and summer, respectively. The force of heat flux and tidal harmonics had a strong effect on the circulation strength and range, as well as the local circulation structures, but these factors did not influence the major circulation structure in the Beibu Gulf. On the other hand, the Beibu Gulf Cold Water Mass (BGCWM) would disappear without the force of heat flux because the seasonal thermocline layer was generated by the input of heat so that the vertical mixing between the upper hot water and lower cold water was blocked. In addition, the wind-induced cyclonic gyre in the northern gulf was favorable to the existence of the BGCWM. However, the coverage area of the BGCWM was increased slightly without the force of the tidal harmonics. When the model was driven by the monthly averaged surface forcing, the circulation structure was changed to some extent, and the coverage area of the BGCWM almost extended outwards 100%, implying the circulation and water mass in the Beibu Gulf had strong responses to the temporal resolution of the surface forces.
An error evaluation on the vertical velocity algorithm in POM
HAN Lei
2014, 33(7): 12-20. doi: 10.1007/s13131-014-0505-7
Abstract:
A time splitting technique is common to many free surface ocean models. The different truncation errors in the equations of the internal and external modes require a numerical adjustment to make sure that algorithms correctly satisfy continuity equations and conserve tracers quantities. The princeton ocean model (POM) has applied a simple method of adjusting the vertical mean of internal velocities to external velocities at each internal time step. However, due to the Asselin time filter method adopted to prevent the numerical instability, the method of velocity adjustment used in POM can no longer guarantee the satisfaction of the continuity equation in the internal mode, though a special treatment is used to relate the surface elevation of the internal mode with that of the external mode. The error is proved to be a second-order term of the coefficient in the Asselin filter. One influence of this error in the numerical model is the failure of the kinetic boundary condition at the sea floor. By a regional experiment and a quasi-global experiment, the magnitudes of this error are evaluated, and several sensitivity tests of this error are performed. The characteristic of this error is analyzed and two alternative algorithms are suggested to reduce the error.
The effect of a seasonal stratification variation on the load exerted by internal solitary waves on a cylindrical pile
CAI Shuqun, XU Jiexin, CHEN Zhiwu, XIE Jieshuo, DENG Xiaodong, LV Haibin
2014, 33(7): 21-26. doi: 10.1007/s13131-014-0468-8
Abstract:
On the basis of Morison's empirical formula and modal separation method in estimating the force and torque exerted by internal solitary waves (ISWs) on a cylindrical pile, it is found that the loads exerted by the ISWs change largely in different seasons at the same site of the continental shelf in the South China Sea (SCS) even under the condition that the amplitudes of ISWs are the same. Thus, the effect of a seasonal water stratification variation on the force and torque exerted by the ISWs is investigated, and a three-parameter stratification model is employed. It is shown that the loads exerted by the ISWs depend largely on the water stratification. The stronger the water stratification, the larger the force and the torque;when the depth where the maximum thermocline appears is deepened, the force decreases but the torque increases;when the width of the thermocline is narrowed, the force increases but the torque decreases. The seasonal variation of the force and the torque exerted by the ISWs in four seasons in the SCS is thus explained.
Numerical studies on the degeneration of internal waves induced by an initial tilted pycnocline
LIN Zhenhua, SONG Jinbao
2014, 33(7): 27-39. doi: 10.1007/s13131-014-0503-9
Abstract:
The pycnocline in a closed domain is tilted by external wind forcing and tends to restore to a level position when the wind falls. An internal seiche oscillation exhibits if the forcing is weak, otherwise internal surge and internal solitary waves emerge, which serve as a link to cascade energy to small-scale processes. A two-dimensional non-hydrostatic code with a turbulence closure model is constructed to extend previous laboratory studies. The model could reproduce all the key phenomena observed in the corresponding laboratory experiments. The model results further serve as a comprehensive and reliable data set for an in-depth understanding of the related dynamical process. The comparative analyses indicate that nonlinear term favors the generation of internal surge and subsequent internal solitary waves, and the linear model predicts the general trend reasonably well. The vertical boundary can approximately reflect all the incoming waves, while the slope boundary serves as an area for small-scale internal wave breaking and energy dissipation. The temporal evolutions of domain integrated kinetic and potential energy are also analyzed, and the results indicate that about 20% of the initial available potential energy is lost during the first internal wave breaking process. Some numerical tactics such as grid topology and model initialization are also briefly discussed.
The influence of background waves on internal solitary waves after the transit of Typhoon Neast in the northern South China Sea
LIN Feilong, HOU Yijun, LIU Ze, HU Po, FANG Yong, DUAN Yongliang
2014, 33(7): 40-47. doi: 10.1007/s13131-014-0511-9
Abstract:
On the basis of the time series observations from a temperature chain and an acoustic Doppler current profiler on the continental shelf of the northern South China Sea, a sequence of internal solitary waves (ISWs) and background waves (BWs, including internal tides and near-inertial waves) on the continental shelf were captured simultaneously after the transit of Typhoon Neast in October 2011. These measurementsprovided a unique opportunity to explore the influence of BWs on the ISWs. The BWs appeared a conversion on the current strength and vertical mode structure during the observational period. The BWs were dominated by weak and mode-one waves before October 2 and then turned to strong and high-mode waves after that time. Meanwhile, the ISWs displayed different wave structures before and after October 2, which was closely related to BWs' changes. According to the current profiles of BWs, the high-mode wave structure with strong current could significantly strengthen the vertical shear of ISWs in the near-surface layer and promote the breaking of ISWs, and thus it may play an important role in affecting the background current condition.
A numerical estimation of the impact of Stokes drift on upper ocean temperature
ZHANG Xiaoshuang, WANG Zhifeng, WANG Bin, WU Kejian, HAN Guijun, LI Wei
2014, 33(7): 48-55. doi: 10.1007/s13131-014-0507-5
Abstract:
The impact of Stokes drift on the mixed layer temperature variation was estimated by taking into account an advective heat transport term induced by the Stokes drift in the equation of mixed layer temperature and using the oceanic and wave parameters from a global ocean circulation model (HYCOM) and a wave model (Wave Watch Ⅲ). The dimensional analysis and quantitative estimation method were conducted to assess the importance of the effect induced by the Stokes drift and to analyze its spatial distribution and seasonal variation characteristics. Results show that the contribution of the Stokes drift to the mixed layer temperature variation at mid-to-high latitudes is comparable with that of the mean current, and a substantial part of mixed layer temperature change is induced by taking the Stokes drift effect into account. Although the advection heat transport induced by the Stokes drift is not the leading term for the mixed layer temperature equation, it cannot be neglected and even becomes critical in some regions for the simulation of the upperocean temperature.
A numerical study on seasonal variations of the thermocline in the South China Sea based on the ROMS
FAN Wei, SONG Jinbao, LI Shuang
2014, 33(7): 56-64. doi: 10.1007/s13131-014-0504-8
Abstract:
On the basis of the regional ocean modeling system (ROMS), the seasonal variations of the thermocline in the South China Sea (SCS) were numerically investigated. The simulated hydrodynamics are in accordance with previous studies: the circulation pattern in the SCS is cyclonic in winter and anticyclonic in summer, and such a change is mostly driven by the monsoon winds. The errors between the modeled temperature profiles and the observations obtained by cruises are quite small in the upper layers of the ocean, indicating that the ocean status is reasonably simulated. On the basis of the shapes of the vertical temperature profiles, five thermocline types (shallow thermocline, deep thermocline, hybrid thermocline, double thermocline, and multiple thermocline) are defined herein. In winter, when the northeasterly monsoon prevails, most shallow shelf seas in the northwest of the SCS are well mixed, and there is no obvious thermocline. The deep region generally has a deep thermocline, and the hybrid or double thermocline often occurs in the areas near the cold eddy in the south of the SCS. In summer, when the southwesterly monsoon prevails, the shelf sea area with a shallow thermocline greatly expands. The distribution of different thermocline types shows a relationship with ocean bathymetry: from shallow to deep waters, the thermocline types generally change from shallow or hybrid to deep thermocline, and the double or multiple thermocline usually occurs in the steep regions. The seasonal variations of the three major thermocline characteristics (the upper bound depth, thickness, and intensity) are also discussed. Since the SCS is also an area where tropical cyclones frequently occur, the response of thermocline to a typhoon process in a short time scale is also analyzed.
A model of sea surface temperature front detection based on a threshold interval
PING Bo, SU Fenzhen, MENG Yunshan, FANG Shenghui, DU Yunyan
2014, 33(7): 65-71. doi: 10.1007/s13131-014-0502-x
Abstract:
A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satellite-derived SST images based on a threshold interval is presented, to be used in different applications such as climatic and environmental studies or fisheries. The model first computes the SST gradient by using a Sobel algorithm template. On the basis of the gradient value, the threshold interval is determined by a gradient cumulative histogram. According to this threshold interval, front candidates can be acquired and prior probability and likelihood can be calculated. Whether or not the candidates are front points can be determined by using the Bayesian decision theory. The model is evaluated on the Advanced Very High-Resolution Radiometer images of part of the Kuroshio front region. Results are compared with those obtained by using several SST front detection methods proposed in the literature. This comparison shows that the BOFD not only suppresses noise and small-scale fronts, but also retains continuous fronts.
Assimilating the along-track sea level anomaly into the regional ocean modeling system using the ensemble optimal interpolation
LYU Guokun, WANG Hui, ZHU Jiang, WANG Dakui, XIE Jiping, LIU Guimei
2014, 33(7): 72-82. doi: 10.1007/s13131-014-0469-7
Abstract:
The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models.
An improved wind speed algorithm for “Jason-1” altimeter under tropical cyclone conditions
QIN Bangyong, ZHOU Xuan, ZHANG Honglei, YANG Xiaofeng, LU Rong, YU Yang, SHI Lijian
2014, 33(7): 83-88. doi: 10.1007/s13131-014-0500-z
Abstract:
Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMORPH) rain rate is introduced to a match-up dataset and then put into a rain correction model to remove rain effects on "Jason-1" normalized radar cross section (NRCS);Hurricane Research Division (HRD) wind speed, which integrates all available surface weather observations, is used to substitute in situ data for establishing this relationship with "Jason-1" NRCS. Then, an improved "Jason-1" wind retrieval algorithm under tropical cyclone conditions is proposed. Seven tropical cyclones from 2003 to 2010 are studied to validate the new algorithm. The experimental results indicate that the standard deviation of this algorithm at C-band and Ku-band is 1.99 and 2.75 m/s respectively, which is better than the existing algorithms. In addition, the C-band algorithm is more suitable for sea surface wind retrieval than Ku-band under tropical cyclone conditions.
An intelligent coastline interpretation of several types of seacoasts from TM/ETM+ images based on rules
WANG Changying, ZHANG Jie, SONG Pingjian
2014, 33(7): 89-96. doi: 10.1007/s13131-014-0482-x
Abstract:
A coastline is defined as the average spring tide line. Different types of seacoast, such as sandy, silty, and biological coast, have different indicators of interpretation. It is very difficult to develop a universal method for interpreting all shorelines. Therefore, the sandy, the silty, and the biological coast are regarded as research objects, and with data mining technology, found the rules of interpretation of those three types of coastlines. Then, an intelligent coastline interpretation method based on rules was proposed. Firstly, the rules for extracting the waterline in Landsat TM/ETM+ (Thematic Mapper/Enhanced Thematic Mapper Plus) imagery were discovered. Then, through analyzing the features of sandy, silty and biological coast, the indicators of interpreting different types of shoreline were determined. According to the indicators, the waterline could be corrected to the real coastline. In order to verify the validity of the proposed algorithms, three Landsat TM/ETM imageries were selected for case studies. The experimental results showed that the proposed methods could interpret the coastlines of sandy, silty, and biological coasts with high precision and without human intervention, which exceeded three pixels.
On the surface roughness characteristics of the land fast sea-ice in the Bohai Sea
LIU Chengyu, CHAO Jinlong, GU Wei, LI Lantao, XU Yingjun
2014, 33(7): 97-106. doi: 10.1007/s13131-014-0509-3
Abstract:
The surface roughness characteristics (e.g., height and slope) of sea ice are critical for determining the parameters of an electromagnetic scattering, a surface emission and a surface drag coefficients. It is also important in identifying various ice types, retrieval ice thickness, surface temperature and drag coefficients from remote sensing data. The point clouds (a set of points which are usually defined by X, Y, and Z coordinates that represents the external surface of an object on earth) of land fast ice in five in situ sites in the eastern coast Bohai Sea were measured using a laser scanner-Trimble GX during 2011-2012 winter season. Two hundred and fifty profiles selected from the point clouds of different samples have been used to calculate the height root mean square, height skewness, height kurtosis, slope root mean square, slope skewness and slope kurtosis of them. The root mean square of the height, the root mean square of the slope and the correlation length are about 0.090, 0.075 and 11.74 m, respectively. The heights of 150 profiles in three sites manifest the Gaussian distribution and the slopes of total 250 profiles distributed exponentially. In addition, the fractal dimension and power spectral density profiles were calculated. The results show that the fractal dimension of land fast ice in the Bohai Sea is about 1.132. The power spectral densities of 250 profiles can be expressed through an exponential autocorrelation function.
Wave-current bottom shear stresses and sediment re-suspension in the mouth bar of the Modaomen Estuary during the dry season
JIA Liangwen, REN Jie, NIE Dan, CHEN Benzhong, LV Xiaoying
2014, 33(7): 107-115. doi: 10.1007/s13131-014-0510-x
Abstract:
On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment re-suspension. Swell-induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.
Tidal flat erosion of the Huanghe River Delta due to local changes in hydrodynamic conditions
JIA Yonggang, ZHENG Jiewen, YUE Zhongqi, LIU Xiaolei, SHAN Hongxian
2014, 33(7): 116-124. doi: 10.1007/s13131-014-0501-y
Abstract:
An ideal nature system for the study of post-depositional submarine mass changing under wave loading was selected in the inter-tidal platform of the subaqueous Huanghe River Delta, a delta formed during period from 1964 to 1976 as the Huanghe River discharged into the Bohai Gulf by Diaokou distributary. A road embankment constructed for petroleum recovery on the inter-tidal platform in 1995 induced the essential varieties of hydrodynamic conditions on the both sides of the road. With both sides sharing similarities in (1) initial sedimentary environment, (2) energetic wave loading, (3) differential hydrodynamic conditions in later stages, (4) enough long-range action, and (5) extreme shallow water inter-tidal platforms;the study is representative and feasible as well. Two study sites were selected on each side of the road, and a series of measurements, samplings, laboratory experiments have been carried out, including morphometry, hydrodynamic conditions, sediment properties, granularity composition, and fractal dimension calculation of the topography in the two adjacent areas. It was observed that in the outer zone, where wave loading with high magnitude prevailed, the tidal flat was bumpy and exhibited a high erosion rate and high fractal dimension. Further, the fractal dimension diminished quickly, keeping with the enlarging of calculative square size. However in the inner zone, where the hydrodynamic condition was weak, the tidal flat was flat and exhibited a low erosion rate and low fractal dimensions;the fractal dimension diminished with the enlarging of calculative square size. The fractal dimensions in the different hydrodynamic areas equalized increasingly as the calculative square size accreted to threshold, indicating that the hydrodynamic condition plays a significant role in topography construction and submarine delta erosion process. Additionally, the later differentiation of sediment properties, granularity composition, microstructure characteristics, and mineral composition induced by the different hydrodynamic conditions can also contribute to the variation of topography and sea-bed erosion in the two adjacent areas.
Non-conventional modeling of extreme significant wave height through random sets
ZHANG Yi, LAM Jasmine Siu Lee
2014, 33(7): 125-130. doi: 10.1007/s13131-014-0508-4
Abstract:
The analysis and design of offshore structures necessitates the consideration of wave loads. Realistic modeling of wave loads is particularly important to ensure reliable performance of these structures. Among the available methods for the modeling of the extreme significant wave height on a statistical basis, the peak over threshold method has attracted most attention. This method employs Poisson process to characterize time-varying properties in the parameters of an extreme value distribution. In this paper, the peak over threshold method is reviewed and extended to account for subjectivity in the modeling. The freedom in selecting the threshold and the time span to separate extremes from the original time series data is incorporated as imprecision in the model. This leads to an extension from random variables to random sets in the probabilistic model for the extreme significant wave height. The extended model is also applied to different periods of the sampled data to evaluate the significance of the climatic conditions on the uncertainties of the parameters.